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ABSTRACT

Programs written in C and C++ can be vulnerable to a wide range
of memory safety issues. From out-of-bounds reads and writes
to use after free errors, developers have to be careful to ensure
that they release code without critical security flaws. Some of the
most common vulnerabilities include out-of-bounds (OOB) read and
writes, use after free (UAF), and improper use of shared resources.
Often, compilers have tools built in that help developers catch
these memory safety violations. While it is not possible to catch or
prevent all memory safety vulnerabilities in a compiler, especially
in languages where there is unsafe behavior explicitly allowed by
the standard like C, there are many approaches that can be applied
to increase memory safety.

This paper investigates a few methods to catch memory safety
violations to see if they could be applied to a single-pass C com-
piler called “Smaller C”. This includes exploring a basic Canary
implementation to prevent stack-smashing attacks and an imple-
mentation of poisoning memory addresses to catch UAF errors.
Along with this, the research covers built-in address sanitation and
investigation into compile-time checks for potential race conditions,
which are effective, but potentially cumbersome—- and by extension
difficult to implement in the Smaller C compiler with traditional
methods. The investigation into security methods that can be used
in a variety of compilers also sheds light on what is viable for lighter
systems, and what techniques can avoid losing out on hard-earned
performance optimizations. Overall, the Smaller C compiler is not
able to catch a significant number of memory safety violations and
should not be used to compile code for any important applications.
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1 OVERVIEW

Memory safety vulnerabilities are a constant security threat to
programs written in C and C++. As recently as this year, major
consumer software companies still uncover security vulnerabilities
that cause privacy concerns for users. Large tech companies such
as Apple, Google, and Microsoft still regularly find seemingly basic
vulnerabilities regarding incorrect memory usage [2].

The Common Weakness Enumeration [6] describes many of the
most common memory safety issues. Of these vulnerabilities, only
a few can theoretically be caught by compilers.

The first of these bugs is out-of-bounds (OOB) read and writes,
which occur when memory outside of an allocated space is accessed
in the program. This can lead to undefined behavior, and can be ex-
ploited by malicious actors to change program functionality. Ideally,
static out-of-bounds references should be caught by the compiler
and flagged as an error, but dynamic accesses can still pass through.

Some compilers implement a memory tagging procedure to detect
OOB errors at runtime [5]. In this procedure, memory blocks are
locked with a tag that is stored in the end bits of a pointer. When a
memory access is made, the tag in the pointer is checked against
the lock on the memory block. If they do not match, that means that
the pointer being used is meant to access a different data block, and
is trying to access data that it should not be able to access. In this
scenario, program execution is terminated to prevent any security
breaches.

Memory tagging procedures generally impose a large overhead
and can be difficult to implement, so many compilers focus on
preventing OOB errors where they are most important: on the stack.
Overwriting data on the stack can allow the function return address
to be overwritten, allowing malicious actors to execute arbitrary
code by inserting a faulty address. David Monniaux details one
method for catching these attacks, in which a randomly generated
“canary” value is inserted before the location that the return address
is stored [13]. This value is checked at the end of function execution,
before a value is returned. If the value was changed, then much like
a canary in a coal mine, it signifies that something has gone wrong.
In this case, it means that the return address was likely changed too,
so the program stops execution to prevent any undesired behavior.

A second issue is use after free (UAF), in which memory that was
allocated for use is freed, then accessed later. This can be used to
cause undefined behavior when exploited. In sequential programs,
it should be possible to prevent this, but it would also be ideal
to ensure that memory is freed in the same scope it is declared,
and only after it has finished being used. Most C compilers do not
address this, but using an address sanitation procedure to detect
memory errors in implementation can reduce this vulnerability [14].
Another possible vulnerability is null-pointer dereferencing. Null-
pointer dereferencing refers to attempting to read memory from a
null-pointer, which could be a pointer that has not yet been assigned,
or a pointer that was freed and reset. Checks like those described
above could help with this, but these tasks will likely be harder
due to the single-pass nature of Smaller C. Since there is only a
single pass through each compilation unit, and no intermediate
steps or representation, there are potential security flaws caused by
one portion of a non-externalized unit that has emergent insecure
behavior due to another subsequent portion. This means that the
source code may need to be reviewed semantically for behaviors
normally caught through the use of comparative or sequential
compilation.

int useAfterFree(int count) {
// Allocate a buffer on the heap

int+ somelnts = calloc(intSize , count);
for (int i = 0; i < count; i++)
somelnts[i] = 8 » 1i;

// Check what's on the heap
for (int i = 0; i < count; ++1i)
printf ("\t\t%d\n", somelnts[i]);
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printf("\n");

// Free the buffer
free (somelnts) ;

// This is our data after freeing
for (int i = 0; i < count; ++1i)

printf ("\t\t%d\n", somelnts[i]);
printf("\n");

useafterfree.c

A particularly difficult to diagnose vulnerability that could be
addressed is the use of shared resources with improper synchro-
nization. This refers to accessing any shared data or resource in a
multi-threaded system in a way that either interferes with other pro-
grams trying to use the same resource, or prevents other programs
from being able to access that resource. If a resource is declared as
“critical,” which means that it should not be accessed by multiple
sources during an operation, it should always be surrounded by a
semaphore, lock, or other equivalent security measure that ensures
exclusive access to it. A compiler could check for unexpected be-
havior when entering and exiting critical sections of code [11], so
we will see if Smaller C implements any such behavior.

Smaller C has some unique limitations that may, if improperly
implemented, lead to security vulnerabilities. First, there is no stack
overflow check, and very few compile-time checks compared to
most multi-pass compilers. This might cause a program to be able
to be frozen by putting it into an infinite loop. Secondly, large
integer constants are ambiguously assigned to types of different
sizes unless they are explicitly marked. This can cause different
amounts of space to be allocated, which can cause issues in extreme
cases.

This paper documents security issues present in smaller C and
puts forward a number of improvements that would reduce the
vulnerabilities present in code compiled with Smaller C.

2 RELATED WORK

2.1 Smaller C Function

It is important to understand the steps taken by Smaller C to compile
code. Before any compilation happens, there is typically a prepro-
cessing step. In GCC, the preprocessor performs a few simple tasks,
such as breaking the program into lines, removing comments, and
merging continued lines [1]. Ultimately, this step tends to not have
much impact on the finished code, as long as it functions prop-
erly. The code for Smaller C’s preprocessor was not included in the
github, only the executable files. In the compilation step, a tradi-
tional compiler might begin by using a lexical analyzer to divide
the characters in the program into tokens, which are distinct sym-
bols with meaning in the program. This includes math symbols,
semicolons, file names, and all other atomic elements of code. From
there, this stream of tokens would be syntactically analyzed, veri-
fying that the tokens appear in a valid order. Then, the function of
the tokens would be determined using a semantic analyzer, and an
intermediary code file would be generated. This intermediary code
is more suited to optimization and modification. The optimization
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step involves reordering code blocks and adjusting code so that
it runs faster. Finally, machine code is generated. Most compilers
perform each step in sequence, not moving onto the next until the
previous has been completed. In contrast, Smaller C parses each
token, verifies it as being properly syntactically ordered and adds it
to a block of symbols. As soon as a block of code can be understood,
it is immediately converted into machine code. This means that any
improvements made to Smaller C cannot come from code analysis,
since there is no period of time in which more than a single line of
code is analyzed. As such, improvements to Smaller C have to be
made primarily in the code generation step, padding unsafe actions
written in C into memory safe interactions in machine code.

2.1.1 Code Optimization. Code Optimization in compilers can of-
ten unintentionally remove security checks or make code less se-
cure. This can be especially true when compiling on hardware
different than the intended program location. We will explore how
Smaller C handles common optimization techniques, such as dead
store elimination. D’Silva et al. laid out how dead store elimination
in GCC removed a necessary security feature from the function
crypt() [7]. Another common error with optimization is how the
compiler handles undefined behavior within the C standard. There
have been noted cases, by Wang et al. where various security checks
are removed due to it being undefined by the C standard [16]. After
looking into the codebase of Smaller C, no evidence of code opti-
mization was found, although it seems as though an intermediary
called RetroBSD may reorder some instructions. RetroBSD was not
investigated during this project. Smaller C performs very little in
the form of code modifications or optimizations, so it is extremely
unlikely that it could create a security threat or remove a security
check from the code.

2.2 Related Memory Security Improvements

This subsection discusses several memory safety improvements
that have been introduced in other compilers that likely will not
work in Smaller C. Memory tagging, like described above, is a pro-
cess in which sections of memory are locked so that they can only
be accessed by certain pointers. Chen et al. describes an implemen-
tation that works to secure memory on the heap /citeChen:HeMate.
During compilation, the author’s tool, HeMate, finds the type, base
address, and size, and uses it to generate tags for each allocated
block of memory. HeMate then stores the tags in the ending bits
of pointers such that they contain type information, as well as a
randomly generated unique tag. This requires every memory alloca-
tion to have a concrete type at compile time, which, despite being a
standard style for C, is not assured by the Smaller C compiler. This
requirement makes storing types in memory tags all but impossible
in Smaller C. Unfortunately, memory tagging in general does not
seem to be possible either. While it would be relatively easy to add
a lock to a block of memory with a simple modification to code
generation, editing the pointers to include a tag would require a
significant refactoring of smaller C. Since it is a single pass system
as well, it would also be extremely difficult to ensure that pointers
to the same location in memory have the same tag, as is typical
in memory tagging procedures. Memory tagging does not appear
feasible in Smaller C.
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Stack Smashing is a common attack that exploits a memory
safety violation. Stack smashing occurs when a malicious attacker
overflows the allocated bounds of an array or other memory struc-
ture in such a way that it overwrites a return address on the stack.
This overwritten address can then jump to code that the attacker
loaded onto the stack, likely somewhere in the data used to over-
flow the memory structure. From there, this code will be executed,
more or less allowing the attacker to do anything they want. Many
other compilers have safeguards against this. One of the simplest
modifications that could be made is to add a canary to protect the
function return value. A typical implementation of a canary starts
by saving a value on the stack directly next to the return address.
When an overflow occurs, the canary is overwritten. Right before
the function returns, the canary value is checked. If the value is
different than expected, that means that an overflow occurred, and
the return address has likely been changed as well. As such, the
program would be terminated to prevent any potential attacks. Un-
fortunately, canary values could not be implemented in Smaller C
due to some limitations in its design.

In lieu of this, there’s another consideration to be made about
a similar memory tagging technique, pointer tagging. However,
Smaller C is implemented for only 32-bit and 16-bit systems, and
does not have enough unused bits in pointers to facilitate pointer
tagging. Pointer tagging reduces the number of bits available for
addressing memory by storing additional information in specific
bits of a pointer. This reduces the maximum addressable memory
below the theoretical 4 GB limit, posing a challenge to memory-
constrained programs trying to run using a 32-bit executable. How-
ever, if Smaller C were to implement features taking advantage of
data alignment inherent to the C language, pointer tagging could
be implemented without compromising usable address space.

One of the most vulnerable parts of memory management is the
heap. The dynamic nature allows for improved efficiency, when
implemented right. That is where the issue lies, C and C++ giving
control to the programmer, while allowing greater efficiency, allows
the programmer to make errors when dynamically allocating and
freeing memory. As stated above there are numerous errors that
can occur, such as UAF, dangling pointers, out-of-bounds, etc. One
solution proposed to this is Lin et al. Compiler and Allocator-based
Heap Memory Protection, or CAMP [12]. While many methods
already exist to combat these errors, one such being address sani-
tization, they can cause up to 26 times overhead. Their proposed
solution has minimal overhead and is fully in software, not relying
on any hardware. CAMP can protect against out-of-bounds mem-
ory access and dangling pointers, which negates any UAF errors.
This is done by adding checks to the program while it is compiling.

3 DESIGN AND IMPLEMENTATION

Smaller C is vulnerable to stack smashing attacks, since it has no
protections in place to stop them. To prevent this, the program was
examined to see if implementing a canary check would be feasible.
Unfortunately, this did not end up being possible. In the function
GenFxnEpilog in genfxnepilog.c, we can see that the return ad-
dress is stored on the stack in a spot four bytes after the frame
pointer. Interestingly enough, when the function doesn’t make a
further function call, it actually stores its return address in a register.
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This means that stack smashing is actually impossible in functions
that don’t call further functions, so there is no need to implement a
canary in those cases. Of course, very few functions make no further
function calls, so programs compiled in Smaller C are still vulner-
able. In scenarios where the return address is stored on the stack,
we can add assembly instructions to check a canary. If the value
differs, a branch error is thrown and the program stops execution.
For this to work however, we would need to ensure that the value of
the canary on the stack and CanaryStoragelLocation will not be
overwritten during normal program execution. As previously men-
tioned, some parts of the code generation process are performed
outside of the actual repository in other tools like RetroBSD. One
of these parts is unfortunately the segment that copies over local
variable registers, including the return address. This means that
the location the canary is written into is being overwritten by a
process that cannot be modified. As a result, virtually all programs,
including those that do not perform overflows or stack smashing
attacks will overwrite the canary. Even if it could be guaranteed
that the canary would be restored afterwards, there is no suitable
location to store the canary in memory. While we can avoid the
issue of having to store the canary in a register by putting it at a
fixed address, there is no guarantee that it will not be overwritten
during program execution. Theoretically, a fixed value could be
loaded in and tested against, but this provides so little in the way
of security that it might as well not exist.

Another idea would be to modify the compilation step of Smaller
C to artificially generate and insert a canary into code. When it
parses the start of a function, it could add code to initialize a variable
that holds a random value and copy that value into a global array.
When Smaller C parses the end of a function, before adding the
end of function code, it could compare the value in the global
array to the canary. In the case of a change, the program would
be terminated. Unfortunately, there is no way to guarantee that
this variable would be anywhere near the return address, making it
rather useless. Additionally, this would necessarily add a reserved
variable name, which would mean that programs that used that
name could not compile. Finally, requiring every program to reserve
space for an array equal to the maximum function call depth seems
undesirable. While this would theoretically work and have a chance
to prevent some stack smashing attacks, it would also prevent a
number of valid programs from compiling. In conclusion, while
canaries can be implemented in a single pass compiler, they are not
able to be implemented in a useful way in Smaller C.

void GenFxnEpilog(void) {
GenUpdateFrameSize () ;
// Check if the function called another function
if (! GenLeaf) {
// Load Canary from Stack into temp register 1
GenPrintInstr20Operands (
MipsInstrLW , 0,
MipsOpRegT1, 0,
MipsOpRegFp, 12
)3
// Load Canary from Storage Location into
temp register 2
GenPrintInstr2Operands (
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MipsInstrLW, 0,
MipsOpRegT2, 0,
CanaryStorageLocation, 0
)
// Compare the two values, if they aren't
equal, crash.
GenPrintInstr3Operands (
MipsInstrBNE, 0,
MipsOpRegT1, 0,
MipsOpRegT2, 0,
MipsInstrExit , 0
)
// Load the return address we stored on the
stack into the return address register
GenPrintInstr2Operands (
MipsInstrLW , 0,
MipsOpRegRa, 0,
MipsOpIndRegFp, 4
)5
}
// Load the previous frame pointer back into a
register
GenPrintInstr2Operands (
MipsInstrLW , 0,
MipsOpRegFp, 0,
MipsOpIndRegFp, 0
)
// Move the stack pointer past the function
frame
GenPrintInstr3Operands (
MipsInstrAddU, 0,
MipsOpRegSp, 0,
MipsOpRegSp, 0,
MipsOpConst, 12 - CurFxnMinLocalOfs
); //12 = RA + FP + Canary
// Jump to the return address and continue
execution
GenPrintInstr1Operand (
MipsInstr] , 0,
MipsOpRegRa, 0
)

genfxnepilog.c

The next fix proposed for the Smaller C compiler is adding mem-
ory address sanitization. This is a method of checking code on
compile time for errors like buffer overflow and UAF. This is gener-
ally done by adding marks to memory addresses. These are either
adding 32 byte aligned poisoned “redzones” before and after con-
tiguous areas of memory, and poison tags when a memory address
has been freed [3]. The redzone allows checks to be made if any ac-
cess to memory is in one of these zones, and an error can be thrown
and the compiler stopped. The poison tags for freeing equate to
an if statement before any dereference of memory to check if that
address has been poisoned. Both of these implementations heavily
make use of the ShadowStack [14]. To implement these poison
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checks for Smaller C there need to be changes made to how it eval-
uates expressions. When a call to free() has been made, it can be
assumed that the next symbol evaluated will be the name of the
pointer that is freed. So a flag is raised that will log the pointer name
in a table for poisoned pointers. This is currently implemented as
a fixed length 2D array, where one dimension is the parse level,
or scope, and the other dimension holds the poisoned pointers.
Later implementations can make this also dynamically allocated to
conserve memory. Then also during evaluation when a dereference
is made it will check the name of the pointer to the table, with the
matching parse level to account for variables that would be out
of scope. If the pointer is in the poisoned table, then the compiler
errors out and stops execution.

char+« identGlobal = NULL;

char+ poisonedldents[32][1024];
int poisonedIndex [32];

char prevUnaryStar = 0;

char toPoison = 0;
if (identGlobal != NULL && strcmp (identGlobal ,
"free") == 0) {
toPoison = 1;
}
// DONE: support __func__
char+ ident = IdentTable + s;
if (toPoison) {

poisonedldents[ParseLevel ][ poisonedIndex [ParseLevel]]

= ident;
poisonedIndex [ParseLevel ]++;
}
if (prevUnaryStar) {
for(int j = ParselLevel; j >= 0; j--) {
for(int i = 0; i < poisonedIndex[ParseLevel ];
i++) {
if (strcmp (ident ,
poisonedldents[ParseLevel J[i]) == 0) {
error ("ident: %s is poisoned\n", ident);

}

identGlobal = ident;

asanpoison.c

4 ANALYSIS

This section presents our findings for this project. First, we docu-
ment a number of vulnerabilities and memory safety issues that
are present in Smaller C. Second, we present a number of lessons
learned from these issues and the process of implementing various
improvements to Smaller C. Finally, we make some brief recom-
mendations for areas of future research.
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4.1 Smaller C Compiler Memory Safety Issues

While examining Smaller C, we were able to document a number of
security vulnerabilities present. Firstly, there are a number of errors
present in the compiler, where expressions that should be syntacti-
cally or semantically invalid are compiled and able to be executed.
One of these issues is related to the fact that the compiler treats
structs as lvalues, which allows code to compile where structures
are being used to assign to arrays of structures or function point-
ers. This should cause crashes on its own, and definitely can lead
to unintended behaviors in programs. Another bug is that extern
and static variables can have the same name, which should not be
allowed since it produces ambiguous behavior due to shadowing.

One concerning property of the Smaller C compiler is that it does
not check for pointer types when dereferencing, it just checks that
the types have the same size. Technically, this should not lead to
any memory safety issues on its own, but it could cause unintended
behavior, which could lead to a memory safety violation.

Bugs related to improper synchronization and race conditions
that are baked into programs can often be caught through the use of
techniques that test the code using several optimization levels and
monitoring critical sections of code [11]. However, since Smaller
C uses one-pass compilation, it isn’t possible to do any compar-
ative or sequential analysis of various sections of code together,
since the compile units are differentiated and converted to machine
code procedurally. In our investigation we have found no way of
mitigating a race condition in any way in a single pass, save for
potentially scanning code semantically to attempt to find a race—
but this would produce at best a warning.

Interestingly, Smaller C does implement a single common tech-
nique for reducing the damage done by overflow errors. Smaller
C, like many other systems, saves return addresses at the start of
the stack frame for functions. What this means is that, in the case
of a simple overflow, the return address for that function is not
affected. Of course, this only safeguards against the simplest of
overflow-based stack smashing attacks, but it is nice to see some
decisions in Smaller C being made with security in mind.

In all, Smaller C is clearly not a reasonable choice of compiler
for any program meant to be distributed. Single-pass compilers
are inherently insecure, since they cannot implement a significant
number of sophisticated memory safety checks that multi-pass com-
pilers can. Smaller C in particular is built in such a way that makes
it difficult to modify and add security features to. Thankfully, the
industry does not use Smaller C as a default compiler, instead opt-
ing for more secure compilers like GCC and Clang. Notably, while
Smaller C presents itself as a “simple and small” compiler, it makes
no obvious mentions of its complete lack of security capabilities.
An unknowing developer could download, install, and begin using
Smaller C under without realizing that it has zero security features,
making their programs vulnerable to all sorts of errors or attacks.
While it is debatable whether or not users should expect security
features from a random compiler that they find online, it is still at
least slightly irresponsible not to add a disclaimer in the readme
stating “due to a lack of security features, this should not be used
for any serious applications.”
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4.2 Lessons Learned

The most important lesson learned from this is to use compilers
that are verifiably secure, and that implement robust security mea-
sures. It is difficult to verify or rigorously check the security of any
compiler, even if you know what you are doing. Code that would
be secure and free from error when compiled with GCC may be
riddled with vulnerabilities if compiled with Smaller C. As such, it
is probably best to use well-established tools that have been thor-
oughly examined by cybersecurity professionals and not random
compilers found online. In general, all compilers should be far more
upfront about their security capabilities and any vulnerabilities
that they fail to catch. It would be nice to imagine that developers
know and understand the risks associated with their programming
language and compiler of choice, but this is obviously not the case.
Developers using insecure tools must be made aware that they are
doing so, and provided steps to mitigate any vulnerabilities that
might cause those.

Another lesson learned from examining Smaller C is just how
much assembly code is needed to make assembly code secure.
Smaller C adds almost no security checks, and as a result, is able to
translate most simple functions into a few lines of machine code.
The theoretical implementation for canaries would have required
at least twenty lines of additional machine code for function initial-
ization and conclusion, and that is a relatively small modification.
Most lines of machine code in a completed program likely have
nothing to do with the program itself, and were generated by a
compiler to ensure memory safety. This is probably why so much
thought and effort is put into compiler modifications that prevent
insecure actions or undefined behaviors as opposed to generating
code to make those actions secure. The best way to ensure that all
programs are secure is to not allow insecure ones to compile.

A third lesson learned from this project is that it is important
to understand the limitations of a codebase. Canaries being almost
impossible to implement in Smaller C is almost solely due to the
fact that Smaller C does not handle transferring and backing up
registers, instead relegating that task to a separate program. Had
this fact been known at the start of this project, perhaps another
memory safety feature could have been researched and actually
implemented. It is always a good idea to thoroughly document code
since it may be used or modified at a later date. Good documentation
can prevent developers from wasting significant time and effort
trying to fix something in one program, only to learn that the issue
is due to a completely separate program. Spending so much time
attempting to implement canaries was not necessarily a mistake,
since it did allow for a deep and thorough understanding of Smaller
C’s code generation process, but time would have been better spent
looking into other potential fixes.

4.3 Future Work

Developers should not spend too much time attempting to add
security features to Smaller C, or any other single pass compiler. If,
for some reason, a program exists that can only be compiled via a
single pass compiler, then work should be done to implement secu-
rity features into RetroBSD, which seems to be performing the code
generation for Smaller C. Canaries could probably be implemented
into this software, which would prevent overflow attacks. Smaller
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C was written by a single developer as a learning experience, and
should not be used or examined further. There is already much
work being done to improve the security of other C compilers, as
there should be. More effort should be spent improving the memory
safety of those tools. Another interesting area for research would
be thoroughly reviewing and analyzing the memory safety features
of GCC or Clang. In particular, a comprehensive report that clearly
and concisely describes the limitations, vulnerabilities, and nec-
essary compiler flags for security would be very interesting, and
likely helpful for most developers.

Another possible area for research would be reducing the over-
head for currently existing compiler memory safety features. Many
compiler flags that add significant memory security are disabled
by default in GCC and Clang because they impose a significant
overhead on the program. This is very similar to the address saniti-
zation procedure that this project implemented into Smaller C. By
reducing the overhead of these security features, it increases the
likelihood that they would be adopted for use by more developers,
improving the security of their code. In fact, if the overhead was
reduced enough, these features could be enabled by default, so that
all code compiled would be more secure.

5 LEGAL CONSIDERATIONS

As laws regarding computing security and secure coding generally
become more prevalent, it is imperative that organizations that
distribute software ensure that their programs are secure and mini-
mize common security vulnerabilities. Making informed decisions
about which compiler to use and leveraging the security features
inherent to that compiler are essential considerations that are often
overlooked. Software integrated into vital parts of society, including
healthcare and finance, are subject to increasingly strict regulations
by bodies such as the European Union, which implemented the
General Data Protection Regulation in 2016[8] and came into effect
two years later. Due to the privacy concerns for users that sparked
GDPR, secure coding is a necessary extension of the conclusions
present in the law.

The GDPR emphasizes the protection of personal data and man-
dates organizations to implement appropriate technical measures
to ensure data protection and security. This includes the need for
secure coding practices to prevent data breaches that compromise
personal information. Compilers have the capacity to improve or
worsen the security of a given piece of software, through checking
or lack thereof, and should be considered essential to the under-
standing of secure code as defined by regulations such as the GDPR.
By enforcing strict penalties on non-compliance, GDPR incentivizes
organizations to prioritize security in development. In the United
States, the introduction of the American Privacy Rights Act (APRA)
in 2024 signifies a greater move towards regulating and strengthen-
ing laws surrounding data protection and cybersecurity[15]. APRA
aims to provide comprehensive protection to individuals and im-
poses strict obligations on how organizations are allowed to handle
personal data, including mandates for robust security measures.
This development emphasizes the importance of secure coding
practices in preventing data breaches and unauthorized access.

Anon.

More recent laws have also been passed in response to increas-
ingly sophisticated cyber-attacks across the world, including ran-
somware in critical sectors of society. Similarly in the EU, the NIS2
Directive mandates a basic level of security required by software
developers in all member states[9]. Addressing the surge of cyber-
attacks, it urges member states to pass swift and harsh legislation
on organizations that violate security practices, and encourage
the adoption of secure practices in their software development
processes.

These regulatory developments highlight a global trend toward
enforcing higher standards of cybersecurity and data protection.
However, mandating the use or adoption of specific compilers could
be fraught, as organizations with a vested interest in undermining
the security of software could theoretically implement backdoors
or security flaws into compilers without the knowledge of users.
Therefore, it is important to understand what limitations should
exist for regulations and legislation passed by governing bodies
when it comes to limiting the freedom of organizations to develop
without undue burdens, while also ensuring the code those orga-
nizations create is suitably protected from cyber-attacks and with
penalties for non-cooperation.

6 ETHICAL CONSIDERATIONS

The ACM code of ethics has a few relevant sections when it comes
to memory safety vulnerabilities in compilers [4].

e Code 1.2: “Avoid harm” This is relevant to the designer
of the compiler, as well as software developers who use it.
Memory security vulnerabilities can cause software to stop
working suddenly, which could cause loss of life if a hospi-
tal suddenly was unable to care for patients. Additionally,
hackers can take control of programs with memory security
vulnerabilities. This could be dangerous, if for example, they

got control of an application that controlled a defensive mili-

tary installation and prevented it from intercepting missiles.

As such, a compiler writer wants to ensure that their com-

piler will prevent memory vulnerabilities, and developers

want to write code that prevents them.

Code 1.3: “Be honest and trustworthy” A compiler should

not misrepresent the extent to which it prevents or detects

memory safety vulnerabilities, or a developer might unin-
tentionally release a program that is unsafe.

e Code 2.7: “Foster public awareness and understanding
of computing, related technologies, and their conse-
quences” This section similarly mandates that a compiler
vendor explain the importance of vulnerabilities that may
not be caught, and should also put forward methods to pre-
vent issues that could make it through to compile time.

e Code 2.9: “Design and implement systems that are ro-
bustly and usably secure” As discussed previously, some
compilers may optimize code in a way that introduces secu-
rity vulnerabilities, which violates this principle. Developers
should also be wary of using compilers that do not guaran-
tee memory safety, since releasing any insecure product is a
violation of this code.
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e Code 3.7: “Recognize and take special care of systems
that become integrated into the infrastructure of soci-
ety” This can be pertinent for any compilers that aim to be
used by an IDE. It is the responsibility of large developer tools
producers to ship compilers that come packaged with their
code environments, such as Visual Studio by Microsoft, that
are memory safe by default, since many developers use that
compiler without ever thinking about it. Since a compiler is
a tool used by other developers, creating an insecure com-
piler can have a knock on effect that results in widespread
vulnerabilities. Thus, it is very important for compilers to
enforce memory safety wherever possible as an ethical duty
to the developers who use them.

A similar code of conduct is the IEEE CS Code of Ethics, which
focuses on the role of software engineers in the world [10]. The
role of this code of ethics mirrors much of what the ACM code of
ethics aims to achieve. The 8 general principles are public, client and
employer, product, judgment, management, profession, colleagues,
and self.

e Code 1.03 “Approve software only if they have a well-
founded belief that it is safe, meets specifications, passes
appropriate tests, and does not diminish quality of life,
diminish privacy or harm the environment. The ulti-
mate effect of the work should be to the public good”
covers much of what Code 1.2 does for the ACM Code of
Ethics. A memory vulnerability in a critical piece of software
can cause immeasurable harm, as stated above possibly can
even cost a life. That’s why it is imperative to uphold this
code.

e Code 1.04 "Disclose to appropriate persons or authori-
ties any actual or potential danger to the user, the pub-
lic, or the environment, that they reasonably believe
to be associated with software or related documents."
This advises that if a compiler has any vulnerabilities that
could pose risks to the public or the environment, such as
data breaches or unauthorized access to sensitive informa-
tion, these risks should be disclosed to the relevant parties,
including regulatory authorities, employers, or clients. Trans-
parency in addressing these issues helps reduce potential
harm and maintains trust.

e Code 3.10 “Ensure adequate testing, debugging, and
review of software and related documents on which
they work” This code is important when it comes to the
security of any piece of software, but even more so when it
comes to compilers. A compiler is something programmers
depend on to build their code, and it’s paramount that a
compiler is thoroughly tested to find any insecure parts to
fix.

e Code 3.12 "Work to develop software and related doc-
uments that respect the privacy of those who will be
affected by that software." Compilers that introduce mem-
ory safety issues can also compromise privacy. For example,
if a vulnerability allows unauthorized access to sensitive user
data, it can violate privacy. This principle emphasizes that
compiler developers should prioritize privacy and ensure
their tools do not create vulnerabilities that could expose
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personal information, which reflects the ethical responsibil-
ity to protect privacy throughout the software development
process.

e Code 6.07 Be accurate in stating the characteristics of
software on which they work, avoiding not only false
claims but also claims that might reasonably be sup-
posed to be speculative, vacuous, deceptive, mislead-
ing, or doubtful. Compilers that claim to prevent memory
safety vulnerabilities must provide clear, verifiable evidence
to support these claims. If a vendor makes false claims about
memory safety or security without proper testing, it can lead
to unsafe software being used. This code advises developers
to avoid misleading claims about their compilers’ capabilities
and ensure that users are fully informed about the actual
security measures, especially regarding memory safety.

e Code 6.08 “Take responsibility for detecting, correct-
ing, and reporting errors in software and associated
documents on which they work” This code is also impor-
tant when it comes to the security of compilers. Unchecked
errors, such as UAF or out-of-bounds, can cause important
systems to fail. Engineers who rely on compilers in order to
prevent these types of errors from occurring can be put at
risk by a compiler developer who neglects this duty.

e Code 8.02 "Improve their ability to create safe, reli-
able, and useful quality software at reasonable cost
and within a reasonable time." Compilers should be reg-
ularly updated to detect and prevent new memory-related
vulnerabilities. This code suggests that developers should
implement memory safety features while balancing cost and
development time to ensure quality and efficiency.

7 CONCLUSIONS

Reading over and understanding a program like Smaller C, in which
all functions are static and have hundreds of side effects is difficult.
As such, a majority of progress up until this point has been spent
analyzing the program execution and figuring out how everything
interacts. In the future, we intend to implement more programs to
show vulnerabilities that pass, and finish implementing more fixes
to reduce the prevalence of memory vulnerabilities in Smaller C.

We do not recommend using Smaller C to compile any program
intended for serious use: Smaller C was a hobby project and is
not able to perform any of the security or optimization tasks that
we expect a compiler to do. Its lack of disclosure about security
vulnerabilities should be an indicator to any user, as with any other
comparable compiler, that code that may otherwise be memory safe
or checked for its memory safety will not have the same properties
or expectations with this compiler.
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