
Sendr: Distributed and Private Instant Messaging
Anonymous Author(s)

ABSTRACT
In the age of the internet, many people have used apps like Discord,
Slack, and WhatsApp to stay connected with their friends and fam-
ily. At the same time, people have been growing more concerned
than ever about their personal data being harvested by companies
and sold off to the highest bidder. As a result, many chat applications
have been implementing security features that protect data from
the service provider, as well as from outside attackers. In this vein,
this project proposed a distributed messaging system emphasizing
privacy through end-to-end encryption (E2EE) of user messages
and their metadata. Even metadata including timestamps and desti-
nations can be used to mine a significant amount of information
about users. The proposed system mitigated these common privacy
concerns with contemporary applications by ensuring both the
content of messages and the metadata (including timestamps and
sender/receiver identities) are securely encrypted. This would allow
users to communicate privately without revealing information.

This project created an application that showcased an imple-
mentation of a messaging platform utilizing E2EE of metadata for
enhancing user privacy. Although the metadata encryption was
not achieved, this modification was thoroughly researched and
designed. The application employed the Redis publish/subscribe
engine, a referentially and temporally decoupled publish/subscribe
model to handle communication across distributed back ends which
allow for scalability. Implementing a web front end made portability
of the application to several platforms straightforward by allowing
any device capable of running a modern web browser to access the
application.

KEYWORDS
Private Information Retrieval, Data Privacy, Data Encryption, Data
Confidentiality, Cryptographic Techniques, Messaging Applica-
tions, End-to-End Encryption, RSA, Public Key Encryption, Shared
Key Encryption, Metadata Encryption, Metadata Obfuscation, Hor-
izontally Scalable Systems, PIR Messaging Client, Distributed PIR,
Privacy, Security, Distributed Systems, MQTT, Encrypted Data Re-
call, Performance and Security Trade-offs, Dynamic Load Balancing

1 OVERVIEW
Now that fast and accessible internet is available almost anywhere,
private and secure Instant Messaging Systems have exploded in
popularity [16]. These applications are relied on for their speed and
reliability, often being used to send critical updates about impor-
tant systems. Other users will feel free to send incredibly personal
information, since they believe that their messages are private; only
visible to them and their recipients. For most chat systems however,
the server has complete and total access to every message, and con-
sequently, all of their users’ private information. Popular modern
systems such as Whatsapp [7], Signal [6], and Telegram [9] utilize
end-to-end encryption to hide conversations from the chat servers
(of which clients do not have access) and potential attackers. This

represents a significant step up in privacy from traditionally en-
crypted messaging services, since now the service provider cannot
act on data contained within their clients messages.

All of these applications however, fail to encrypt the metadata of
messages. This still represents a large concern for user privacy [21].
Metadata can be used to learn a lot about the conversation and
build a profile around users [21]. Addressing this concern has been
the primary motivation for this project. An application performing
end-to-end encryption, including encryption of message metadata,
would allow for completely anonymous communication between
clients. Some attempts at totally anonymous systems, like private
information retrieval (PIR) were attempted. However, they have
proved difficult to scale. Tovey et al. [21] proposes a distributed PIR
protocol to address this issue by off-loading work to the client.

The goal of this project is to develop an instant messaging system
with private-metadata messaging, similar to that created by Tyagi
et al. [22]. In order to achieve enhanced scalability, the application
will be designed in a distributed manner, taking inspiration from
Lu et al. [11] for architecture choices. The messaging functionality
will be implemented using end-to-end encryption, meaning the
server never knows message contents. The application itself will be
hosted through a web-server, which will also be used as a reverse
proxy. Traffic will be load balanced and routed through multiple
back end servers. We will use a publish subscribe engine to process,
replicate and retain messages, with an in-memory data store.

This report is organized as follows: Section 2 discusses related
research and industry implementations in the topic of metadata
end-to-end encryption. Section 3 details the design and implemen-
tation of the application, including the technology stack and tools
used. Section 4 presents acquired results, and what was learned
from the project. Sections 5 and 6 discuss legal and ethical consider-
ations, respectively, in the context of the project. Finally, section 7
showcases the achieved results and highlights directions for future
work.

2 RELATEDWORK
This section reviews a number of papers that have presented se-
curity improvements to distributed messaging systems. Several
solutions are already present in released applications and have
been demonstrated to be scalable and feasible. Several other papers
implement procedures to obscure and obfuscate metadata generated
by sending and receiving messages, but these methods have not
been implemented in a widely adopted messaging service. As such,
there are significant doubts about the scalability of these systems.

2.1 Solutions with demonstrated scalability
Signal is one of the most widely used applications that features end-
to-end encryption, and as such, the methods they use to encrypt
and decrypt messages are extremely relevant to this project. All
security on the application stems from a device-specific public and
private key pair, called an identity key pair [5]. Users may load these
keypairs onto different devices to access their communications from



CSCI, Project Report, 2024 Anon.

both places. When creating a chat with another user, the public
keys are exchanged unencrypted, allowing both parties to encrypt
messages to each other. All of the information about each chat,
including public keys, is saved on a user’s device to ensure that
no handshake procedure is needed on relaunch. For group chats
or other sessions created with a shared key encryption system, a
key ratcheting procedure is used to regularly refresh the key. This
ensures that, even if a key is leaked, it will expire shortly after
and not cause too much damage. This key ratcheting procedure is
initialized based on secret information that was communicated at
the start of the chat. This means that it would be difficult, if not
impossible for malicious attackers to be able to guess any future
keys based on a single leaked one. Signal encrypts user metadata
sent to and from the server, but has no process in place to anonymize
traffic or further protect user confidentiality. Overall, Signal has a
fairly robust but simple end-to-end encryption scheme.

Another app that improved the privacy of their users is Sim-
pleX [20]. Released in 2021, SimpleX has published a white paper
that overviews their goals and solutions. They highlight that in
widespread chat platforms, users lack privacy, suffer from spam,
and overall, their data is not protected. They claim to solve these
problems by having no identifiers associated with the user and
also only storing data locally. Unlike other platforms, they have
no phone numbers, email, usernames, or even random keys. They
have no knowledge of the user, so they claim to not even know
how many users they have. Malefactors and spammers cannot act,
since the only way to be contacted is by sharing a one-time invi-
tation. They achieve this by using unidirectional message queues,
the analogy they make is “having a different email address or a
phone number for each contact you have.” Since SimpleX does not
store data, and simply relays messages to other users, it is impossi-
ble to access it anywhere except your local device. They compare
themselves to services using other protocols, specifically P2P, and
highlight that SimpleX is more efficient, communication cannot be
tied to SimpleX since it uses standard internet traffic, more secure
(resistant to Man in the Middle Attacks, and the fact that it has
no discovery mitigates many other attacks), and less likely to be
attacked and taken down.

Message Queuing Telemetry Transport (MQTT), a communica-
tion protocol used for many Internet of Things applications, follows
the publish/subscribe pattern and relies on a single, centralized bro-
ker, which is unsustainable for networks designed to serve 106
devices per square kilometer. Longo et. al. [10] implement a plugin
that converts a single centralized broker into a system capable of
being distributed. Routing is based on a spanning tree for each
topic that is recreated every time a broker connects or disconnects,
with all messages routed through the root broker. As all brokers
are only on the routing tables of topics they are interested in, table
size is significantly reduced and brokers are not relaying irrelevant
information. Longo et. al. found this to reduce the end-to-end delay
by greater than 50%, while traffic overhead increased dramatically
relative to the number of topics.

The techniques and improvements described above have been
shown to be feasible for large, scalable applications. In particular,
end-to-end encryption has been shown to be robust and has been
thoroughly tested. These methods seem to be practical, reasonable
security improvements, and have been implemented in successful

commercial messaging systems. In contrast, no metadata obfusca-
tion methods have been implemented in a widely used application.
This does not mean that they will never be useful, but simply that
they are a little too cumbersome for practical application.

2.2 Metadata obfuscation procedures
The following papers proposed methods to obfuscate metadata
generated by the act of sending or receiving a message. These
procedures greatly increase the privacy of their users, but come at
cost to scalability or latency.

Stadium, a novel messaging system proposed by Tyagi et al. [22],
features an interesting methodology to protect the privacy of users.
The goal is to ensure that malicious attackers cannot ascertain
any information about the messages users are sending, such as the
time they are being sent, who they are being sent to, or any other
form of metadata. Stadium obfuscates this information by having
every client constantly send out fake messages. These messages
are then shuffled across all of the different servers. During this
shuffling process, none of the metadata related to the messages is
ever revealed. After being shuffled, the metadata of the messages
is checked, and messages being sent in the same conversation are
swapped. Due to the way this was implemented, it is a mathematical
guarantee that eachmessage will be swapped to go to its destination
at some point during this process. After this, all of the messages
are unshuffled and sent back to their original senders. Since some
messages have been swapped, those senders would receive a new
message instead of the one they originally sent. This procedure
makes it extremely difficult for malicious actors to be able to tell
where messages are being sent to, since it appears as though all
messages are sent from the client back to themselves.

This procedure is extremely interesting, but likely very ineffi-
cient. In addition, this would require a significant amount of clients
in order to ensure that there are always enough users online to
anonymize the path of messages. Additionally, the amount of time
needed to perform the procedure being measured in dozens of
seconds ensures that this is not a feasible method of mass com-
munication, especially since users can only communicate once per
time the procedure is performed. This procedure may be feasible
for a highly secure shopping app, where users might only want
to make a request every few minutes, but certainly, this latency is
far too high for a common messaging application. Removing the
shuffling procedure, but keeping the message swapping may be a
far more reasonable and efficient method. This would still ensure
that malicious attackers cannot intercept messages and track them,
and still add a high degree of anonymity to the service.

Private information retrieval, or PIR is a protocol that allows
users to access information from a server without the server know-
ing what information was retrieved. This effectively keeps the
metadata of the message secure from even the server, preventing
the server from knowing virtually anything about the behavior
of the clients. This methodology allows for improved confiden-
tiality of users, but generally comes at the cost of bottlenecking
performance on the server since every message must be treated as
though it could be sent to every client. Tovey et al. [21] proposes
a method to improve the scalability of this method, distributing
some of the work to the clients. By using the clients to perform



Sendr: Distributed and Private Instant Messaging CSCI, Project Report, 2024

Figure 1: Proposed Deployment Architecture Diagram of Sendr. Front-facing load balancers handle load distribution for several
web server instances and internal load balancers handle load distribution for an internal network of back end servers.

matrix multiplication, computation power scales with the number
of clients. Since the computing power needed also scales with the
number of clients, this effectively makes the computation occur
in constant time, moving the bottleneck to the speed of commu-
nication between all of the clients and the server. While this still
represents a significant amount of computation time spent and is
reliant on all clients having somewhat powerful processors, the
improved scalability makes PIR much more feasible for use than
previous implementations. As is, PIR still imposes far too much
overhead to be worth considering, but it is interesting to consider.

3 DESIGN AND IMPLEMENTATION
Our project is called Sendr - a web-based instant messaging platform
utilizing end-to-end encryption of message content. We had also
hoped to encrypt metadata, but were unable to implement this
during the duration of the project.

The application structure consists of a front end and a back end.
The Sendr back end can be scaled up to several identical processes
across potentially multiple virtual private servers (VPS). This makes
up the entire back end service. Redis [17] is used as a pub/sub
engine for communication among the instances of the back end
and for message retention and replication. Front end clients will
be connected to the back end service through an Nginx [13] web-
server instance which can be configured to handle load distribution
among the several instances of the back end. For the purposes
of this report, the application is hosted by a single Nginx web-
server on a single machine. However, this is only a limitation of
resources and not of the application; given sufficient access to
resources, this application could be hosted across several machines
and accessed through a load balancing service such as AWS Elastic
Load Balancing [19] for scalability. Figure 1 shows a visualization of
this proposed deployment architecture. The use of Docker Swarm
would allow running multiple instances of the back end across
different VPS.

The frontend of the application is developed using the React [12]
web framework. It is accessible using any device with access to a
modern browser (JavaScript is needed) and the internet. We origi-
nally intended for users to be able to send direct messages, create

group chats, and view current and past chat history. Currently, they
are only able to participate in group chats. All messages sent by
the user are encrypted using RSA public key encryption. First, the
text of the message is encrypted with the recipient’s public key, so
that the server cannot see it. Then, the metadata of the message
is encrypted with the server’s public key and prepended to the
message. The server then decrypts this metadata and sends the
encrypted message to the correct user. For group communications,
a message is sent for each other user in the group chat, encrypted
with their public key. Since we are using a pub-sub architecture,
each user technically receives all of the message, but are only able
to decrypt one. To share keys, every time a user joins a channel,
they send their public key in a related channel. Additionally, they
automatically check the message history for all previous keys to
ensure that they can send messages to all other users in the chat.
Users are not shown any messages that are encrypted with a pub-
lic key other than their own. Unfortunately, this means that they
cannot actually read any messages sent from before they joined the
chat. We had an idea for users to be able to “reveal history” to new
users, but were unable to implement it. This would have involved
each user preserving a record of chat history and re-encrypting
and sending it to new users.

The back end service is written in the Go programming language
and uses the Centrifuge [8] web socket library for web socket com-
munication. Using Redis as a pub/sub engine provides the several
back end instances access to a distributed shared space for sending
and receiving messages. This back end architecture is encapsulated
as the back end service, which acts as a centralized black-box source
that a frontend client can communicate with, even though the un-
derlying services may be distributed across many machines. The
back end service can thus be configured to use resources on-demand
for high-traffic circumstances, that is, back end processes can be
scaled up and down as needed. A single back end process primarily
uses web socket communication to receive/send chat messages to
the frontend clients and HTTP communication for sending and
receiving API responses.



CSCI, Project Report, 2024 Anon.

4 ANALYSIS
Working on this project provided a very clear glimpse into the real
trade offs that must be made when adding security to distributed
systems. For example, consider end-to-end encryption. End-to-end
encryption acts to protect clients against possible information leaks
on the server by keeping their data encrypted whenever the server
handles it. The problem comes when deciding how to handle group
chats. Using a public key encryption system as we are requires
sending a message encrypted with each unique user’s public key to
the server, so that they can be distributed to recipients as necessary.
This means that the amount of computational power and network
power spent by a user now scales directly with the amount of
people in the group chat. Normally, regardless of the number of
members of the group chat, each user would send a message that
would be decrypted and re-encrypted by the server. In this scenario,
the computing power of the server, not the client, is the bottleneck.
For web-based applications ostensibly meant to be used by people
on their phones, this is obviously far superior.

Another method of encryption that could have been utilized is
shared key encryption, which works when every client shares a
single key used for encryption and decryption. Anyone who dis-
covers the shared key can immediately decrypt all messages sent
in that group chat. The initial creation of a group chat requires a
secure channel to communicate a shared key across, so shared key
encryption cannot be implemented in an application by itself. In
essence, creating an end-to-end shared key encryption scheme first
requires creating a channel with end-to-end public key encryption.
Regardless, end-to-end encryption poses a significant restriction on
the design and implementation of a project. By itself, encryption
already imposes a significant performance overhead on an applica-
tion. For a chat application, messages are sent infrequently enough
that complete encryption is reasonable. Applications that are in
constant communication with their servers may not be able to en-
crypt all information, though. Of possible concern are applications
that record their users’ habits and impressions. Either the constant
stream of data generated is processed locally on the application, or
it would be sent, possibly unencrypted, to a server.

Our theorized modification of hiding metadata would have im-
posed a very small overhead on the server. End-to-end encryption
generally means that the server does not have to encrypt anything
since the clients do that. The limitation of sending encrypted meta-
data does mean that they still need to actually perform encryption.
This is not a big deal, since servers should generally be equipped
to handle encryption tasks.

The scope of work for this project was far broader than what we
initially anticipated. We had a number of goals in mind as improve-
ments to make to a chat application, and we did not manage to
complete all of them. While the end goals of end-to-end encryption
and metadata encryption are reasonable, the amount of work that
was needed to create a chat application that could show off these
encryption methods was more than expected. Overestimation and
overplanning are not inherently bad, but most of our time has been
spent on basic infrastructure for a chat application. We also added
a number of useful features for users to improve their experience,
but these features were not necessary to demonstrate the main
research goals of this project. This reduced the amount of time

that we could spend investigating encryption or improving server
scalability, which are the main areas of focus of our research. We
probably did not need to include as many niceties, such as Google
authentication or message history as we did, and likely should have
chosen a single set of improvements to focus heavily on. Incorpo-
rating all of these distinct features into a single application would
have taken significantly longer than the allotted time, even for
experienced web developers.

That being said, implementing message history did allow us to
investigate another interesting side effect of end-to-end encryption.
Since the server only receives fully encrypted messages, it must
store all messages encrypted. This obviously prevents moderation
or the enforcement of a variety of communication laws, but it also
affects users. If a user tries to load their message history, they must
receive encrypted messages. This is not a problem if their public
and private keys are the same. Unless the public and private keys
are stored on the device, there is no way of reloading messages,
since they would be randomly generated when the application is
launched. Additionally, this prevents users from being able to reload
message history on a different device unless they transport their
key pair over. End-to-end encryption, which is meant to prevent
the ways service providers can interact with consumer data also
limits the ways in which users can interact with their data.

There are a number of opportunities for future work on this
project. Most obviously, actually implementing metadata encryp-
tion would be extremely important. One actual improvement could
be using shared key encryption for user-made group chats. By
automatically creating and sharing a shared key over end-to-end
encrypted channels, users could make large group chats that would
not impose significant overhead on sending and receiving messages.
Another improvement would be implementing the anonymity pro-
cedure in Stadium [22]. Finally, there is a significant opportunity
for research into end-to-end encryption protocols that would actu-
ally enable users to view their message history on any device they
choose to log into. Currently, this is one feature of most messaging
applications and social media that cannot be replicated by services
that use end-to-end encryption. If someone managed to enable this
feature, end-to-end encrypted messaging may be more viable than
traditional encryption methods.

5 LEGAL CONSIDERATIONS
Since our application features end-to-end encryption, it is subject
to some legal precedence that traditionally encrypted apps are not.
Some governments may require access to message logs and user
information, or to ban specific users from the service. Failure to
comply may result in country-wide bans [18], though countries
such as the USA have legal protections for preventing access to
private information [14]. Other countries are debating a ban on
end-to-end encryption services entirely, saying that they prevent
the government from being able to track illicit activities. There is
a significant amount of legislation on the books that is related to
private messaging services, since before encrypted messaging was
even being widely used. Back in the day of telephones, the wiretap
act [15] carved out the ability for officers of the law to “intercept
wire, oral, or electronic communications,” an action which would
be criminal for the layman. It requires that law enforcement get



Sendr: Distributed and Private Instant Messaging CSCI, Project Report, 2024

a warrant or otherwise obtain authorization before surveilling a
person’s communications, but it sets legal precedent for following
laws. The most recent relevant law passed in the United States cod-
ifies this authority into a duty: under the Protect Our Children Act
of 2008 (POCA), all electronic service providers, be they a website,
messaging service, or other application, are required to report any
sharing of child pornography, hold onto such images for evidence,
and may be held liable for failing to do so [3]. Applications that
have true end-to-end encryption do not allow servers to view the
data, and therefore service providers cannot identify illicit materials
unless reported by a user. Since the recipient of illicit materials are
likely not going to report the material, many argue that apps with
end-to-end encrypted messaging should be required to either allow
some backdoor access or some other way to moderate content. As
of right now, organizations like the FBI do not have access to all
message information on encrypted messaging services.

As of 2021, the FBI can only lawfully access the date and time
of registering, and the user’s last access date for Signal [14]. While
this information is certainly relevant and could help investigations,
it can still be argued that it is in violation of POCA. I believe that
a procedure could be implemented that would change the encryp-
tion of certain chats under investigation to be treated as group
chats, and thus having a shared key which would be shared with
government agencies. While this would not give access to chan-
nel history, and thus could not be used to find proof of previous
criminal communications, it would allow for future acts to be doc-
umented and recorded as proof. For our application, since users
register through Google, the only information we are capable of
sharing is their Google account, as our authorization key does not
allow us to access any other data. We or Google may be capable of
sharing registration and sign-in dates or times, but neither of us
would have access to any of the information sent on this platform.

In the US, a few pieces of legislation have been proposed that
could disincentivize messaging platforms from using end-to-end
encryption. One such example is the EARN IT Act of 2023 [4]. This
bill is designed to hold service providers accountable for any con-
tent on their platforms that features the exploitation of children.
Among the provisions in this bill, it mandates that companies are
held accountable for failing to properly record and report instances
of child exploitation on their platforms. Services that feature strict
end-to-end encryption would have to put some measures in place
to accept reports and verify their contents, since their servers, by
design, do not know the contents of conversations. In fact, end-to-
end encryption is specifically named in section 5.7 of the act as
something that does not shield the company from liability. Under
this act, the provider being unable to decrypt secure communica-
tions would not shield them from liability, if they had received
any information informing them of relevant abusive content. This
law would effectively prevent the development of end-to-end en-
crypted applications without moderation, as the developers could
be prosecuted for developing an app that fails to adequately protect
minors.

6 ETHICAL CONSIDERATIONS
The ACM Code of Ethics and Professional Conduct [2] provides a
standard guideline addressing ethical concerns relating to the world

of computing. This guideline provides the means for computing
professionals to ensure ethical standards are being met and is the
closest step towards enforcing these ethical standards. The imple-
mentation and integration of Sendr raises many of these concerns:

• ACM 1.1 Contribute to society and human wellbeing:
This principle obligates computing professionals to ensure
that the work they do benefits society and humanity. Sendr,
as is aligned with our goals, would provide complete private
communication between two or more parties. This can be
utilized by people who may wish to disclose information
without exposing their identity (e.g. whistle blowers or peo-
ple living under oppressive governments). While privacy
is considered the main goal for this application, and a ben-
eficial feature to implement, it may invite misuse among
actors who wish to confide in it for nefarious purposes (such
as criminal activity). Without knowing the identity of the
application users (should we proceed with a custom authenti-
cation method) then it would be extremely difficult for police
and investigators to track down these individuals.

• ACM 1.2 Avoid Harm: Computing professionals should
also be wary of harmful side effects caused by their work.
Sendr is capable of concealing communication between users,
which opens the possibility of harmful conversations. With-
out having any real way to identify hateful and harmful
rhetoric in conversations, it may be necessary to include
additional safety settings for users (such as the ability to
block other users).

• ACM 1.3 Be honest and trustworthy: This principle re-
quires that computing professionals be transparent and hon-
est with the claims they make about their works. Sendr is
claimed to be compliant with E2EE, so users should be able to
validate this claim. One potential option is to make the client
program open-source. This would allow individuals to con-
trol for themselves that the application uses state-of-the-art
encryption methods on message data and metadata, which
would forgo the need to trust in the application developers.

• ACM 1.6 Respect privacy: It is important for computing
professionals to be aware of how the technologies they de-
velop can be a threat to user privacy. It is very easy to collect
user data and, in some instances, highly desirable to perform
analyses on the data. Sendr is intended to be a private mes-
senger application utilizing E2EE and if made open-source,
users would have full autonomy over what data about them
gets sent and how. The server itself may retain message logs
for a short period of time, but given that these messages will
be encrypted the actual content would be useless.

• ACM 1.7 Honor confidentiality: Computing professionals
should respect confidential information about clients un-
less otherwise required to be exposed to law enforcement.
Sendr, being a messaging app, will naturally collect incom-
ing messages from users and will temporarily cache them
server-side. However, given that the messages utilize E2EE,
they are unlikely to be useful. Furthermore, messages will
only be retained for a short period of time before being dis-
carded, which would make uncovering past conversations
impossible. Should the need arise, Sendr will need to provide



CSCI, Project Report, 2024 Anon.

whatever data it has to law enforcement, which would in-
clude metadata for recent messages and user information (as
it stands, authentication is handled via Google, so there is
likely to be substantial information pertaining to a user, this
is subject to change upon implementing a custom authenti-
cation method).

• ACM 2.1 Strive to achieve high quality in both the pro-
cesses and products of professional work: As computer
services become integrated into society, it is necessary to
ensure that the quality of these works meets conventional
security and reliability expectations. Sendr uses E2EE in
order to provide user privacy, so it is crucial that modern
encryption algorithms are used. Third-party libraries should
be up-to-date and regularly updated to address discovered
vulnerabilities. Regular security audits and consultation with
security experts can be utilized to ensure the app remains
secure.

• ACM 2.3 Know and respect existing rules pertaining
to professional work: Computing professionals must un-
derstand and recognize and abide by any local, national, and
international laws pertaining to their works. Depending on
the kinds of regulations that are in place, it may not be legally
admissible to provide access to Sendr in certain regions.

The IEEE Code of Ethics [1] defines additional professional guide-
lines in the computing community. As computing professionals we
are expected to follow these as well:

• 1. to hold paramount the safety, health, and welfare of
the public: As mentioned previously, works involving sen-
sitive user information should ensure modern cryptographic
facilities are used to secure it. Sendr being a private and se-
cure system should avoid third-party cryptographic libraries
that are out-of-date and/or no longer being maintained.

• 5. to seek, accept, and offer honest criticism of tech-
nical work: Should Sendr be distributed as an open-source
project, it would be necessary to accept authentic changes
made by third party individuals concerning vulnerabilities
and bugs.

7 CONCLUSIONS
The project successfully implemented a distributed messaging sys-
tem that emphasizes security by using techniques such as end-to-
end encryption. Users can communicate securely with messages re-
maining private, decreasing the risk of being exposed to malefactors
due to server breaches. While we would have liked to implement
metadata encryption or obfuscation, this goal was unfortunately
not achieved. The application is scalable and can be used concur-
rently by a large number of users without compromising security,
or incurring significant slowdown. It is also resilient to failure, be-
ing able to provide a consistent experience where the user doesn’t
notice any unusual behavior.

In the future, the scalability of this system should be rigorously
tested, it should also be updated as users discover issues. Addition-
ally, instead of using Google or other third-party authentication
methods, it may be desirable to implement a custom one which
ensures user privacy. It would also be desirable to support shared
key encryption to reduce overhead in group chat settings. Overall,

we have created a functional chat application that incorporates
end-to-end encryption techniques to create a functional and secure
experience, with plenty of room for improvement.

REFERENCES
[1] 1984. IEEE code of ethics. IEEE Transactions on Reliability R-33, 1 (1984), 14–14.

https://doi.org/10.1109/TR.1984.6448267
[2] ACM. 2018. ACM Code of Ethics and Professional Conduct.

https://www.acm.org/code-of-ethics. Accessed: 2024-11-20.
[3] U.S. Congress. 2007. S.1738 - 110th Congress (2007-2008): Privacy and Civil

Liberties Oversight Board Act of 2007. https://www.congress.gov/bill/110th-
congress/senate-bill/1738 Accessed: 2024-10-28.

[4] U.S. Congress. 2023. S.1207 - 118th Congress (2023-2024): EARN IT Act of 2023.
https://www.congress.gov/bill/118th-congress/senate-bill/1207 Accessed: 2024-
12-2.

[5] Signal Foundation. 2013. Asynchronous Multi-Device Encryption. https:
//signal.org/docs/specifications/sesame/

[6] Signal Foundation. 2013. Signal: A Private Messenger. https://signal.org/
[7] WhatsApp Inc. 2009. WhatsApp Security. https://www.whatsapp.com/security/
[8] Centrifugal Labs. 2023. centrifuge. https://github.com/centrifugal/centrifuge.
[9] Telegram Messenger LLP. 2013. Encryption. https://core.telegram.org/api/end-

to-end
[10] Edoardo Longo and Alessandro E.C. Redondi. 2023. Design and implementation of

an advanced MQTT broker for distributed pub/sub scenarios. Computer Networks
224 (2023), 109601. https://doi.org/10.1016/j.comnet.2023.109601

[11] Shoulei Lu, Jun Ye, and Zheng Xu. 2023. Analysis of InstantMessaging Systems for
Users Based on the Go Language. In Innovative Computing Vol 2 - Emerging Topics
in Future Internet. Springer, Springer Nature Singapore, Singapore, 638–646.

[12] Meta. 2024. React. https://react.dev/
[13] Netcraft. 2024. Nginx. https://nginx.org/en/
[14] Federal Bureau of Investigation. 2021. FBI’s Ability to Legally Access Secure Mes-

saging App Content and Metadata. https://propertyofthepeople.org/document-
detail/?doc-id=21114562

[15] Bureau of Justice Assistance. 1986. Privacy and Civil Liberties Authorities. https://
bja.ojp.gov/program/it/privacy-civil-liberties/authorities/statutes/1285 Accessed:
2024-10-28.

[16] Media Engagement Project. 2023. Encrypted Messaging Applications and Politi-
cal Messaging. https://mediaengagement.org/research/encrypted-messaging-
applications-and-political-messaging/

[17] Redis. 2024. Redis. https://redis.io/
[18] Reuters. 2023. Brazil court suspends Telegram for not complying with order on

neo-Nazi groups. https://www.reuters.com/technology/brazil-court-suspends-
telegram-not-complying-with-order-neo-nazi-groups-2023-04-26/

[19] Amazon Web Services. 2024. Elastic Load Balancing. https://docs.aws.amazon.
com/elasticloadbalancing/

[20] SimpleX Chat Team. 2023. SimpleX Messaging Protocol. https://github.com/
simplex-chat/simplex-chat/blob/stable/docs/SIMPLEX.md

[21] Elkana Tovey, Jonathan Weiss, and Yossi Gilad. 2024. Distributed PIR: Scaling
Private Messaging via the Users’ Machines. Cryptology ePrint Archive, Paper
2024/978. https://eprint.iacr.org/2024/978.

[22] Nirvan Tyagi, Yossi Gilad, Derek Leung, Matei Zaharia, and Nickolai Zeldovich.
2017. Stadium: A Distributed Metadata-Private Messaging System. In Proceedings
of the 26th Symposium on Operating Systems Principles. Symposium on Operat-
ing System Principles, Association for Computing Machinery, Shanghai, China,
423–440.

https://doi.org/10.1109/TR.1984.6448267
https://www.congress.gov/bill/110th-congress/senate-bill/1738
https://www.congress.gov/bill/110th-congress/senate-bill/1738
https://www.congress.gov/bill/118th-congress/senate-bill/1207
https://signal.org/docs/specifications/sesame/
https://signal.org/docs/specifications/sesame/
https://signal.org/
https://www.whatsapp.com/security/
https://github.com/centrifugal/centrifuge
https://core.telegram.org/api/end-to-end
https://core.telegram.org/api/end-to-end
https://doi.org/10.1016/j.comnet.2023.109601
https://react.dev/
https://nginx.org/en/
https://propertyofthepeople.org/document-detail/?doc-id=21114562
https://propertyofthepeople.org/document-detail/?doc-id=21114562
https://bja.ojp.gov/program/it/privacy-civil-liberties/authorities/statutes/1285
https://bja.ojp.gov/program/it/privacy-civil-liberties/authorities/statutes/1285
https://mediaengagement.org/research/encrypted-messaging-applications-and-political-messaging/
https://mediaengagement.org/research/encrypted-messaging-applications-and-political-messaging/
https://redis.io/
https://www.reuters.com/technology/brazil-court-suspends-telegram-not-complying-with-order-neo-nazi-groups-2023-04-26/
https://www.reuters.com/technology/brazil-court-suspends-telegram-not-complying-with-order-neo-nazi-groups-2023-04-26/
https://docs.aws.amazon.com/elasticloadbalancing/
https://docs.aws.amazon.com/elasticloadbalancing/
https://github.com/simplex-chat/simplex-chat/blob/stable/docs/SIMPLEX.md
https://github.com/simplex-chat/simplex-chat/blob/stable/docs/SIMPLEX.md
https://eprint.iacr.org/2024/978

	Abstract
	1 Overview
	2 Related Work
	2.1 Solutions with demonstrated scalability
	2.2 Metadata obfuscation procedures

	3 Design and Implementation
	4 Analysis
	5 Legal Considerations
	6 Ethical Considerations
	7 Conclusions
	References

