
RIT Computer Science • Capstone Report • 20171

Replicating Real World Stage Lighting for AR apps
Gerrit Krot

Department of Computer Science
Golisano College of Computing and Information Sciences

Rochester Institute of Technology
Rochester, NY 14586

gnk1165@g.rit.edu

Abstract—Augmented Reality (AR) applications seek to create
realistic experiences that place computer generated objects in
physical spaces. Replicating the lighting conditions of these spaces
is difficult on wearable AR devices due to their low processing
power and lack of lighting data from video input. On many
devices, developers are unable to access data from cameras,
which means that real-time lighting is impossible. AR-enhanced
stage play applications are typically built for a specific stage
and lighting setup, and as such, lighting data can be set by
developers. While this does allow for increased realism, this
process is imprecise, difficult, and time consuming. Additionally,
the prevalence of spotlights, which cast light into a very specific
area, make indirect lighting techniques like HDR environment
mapping ineffective at best. This paper details a method to
replicate the lighting conditions present in an image of a lit
stage using a genetic algorithm, implemented in an Unreal Engine
library. By using a genetic algorithm to optimize the angle, color,
and size of spotlights, the lighting environment of a stage can be
replicated and used to illuminate digital objects. Currently, this
method does not produce results suitable for use, but could be
improved with a few modifications.

Index Terms—Augmented Reality; AR; Oculus Rift; Lighting;
Stage Lighting; AR-enhanced play; Genetic Algorithm; GA;

I. INTRODUCTION

When someone engages with augmented reality (AR), they
expect an immersive experience, where digital objects interact
with the physical world. This immersion is predicated on
objects interacting with the geometry of this environment as
expected: moving across floors, stopping at walls, and being
hidden behind nearby objects. Luckily, most AR devices have
robust systems in place to map the shape of the surrounding
area, allowing developers to have their objects interact with
geometry generated on the fly based on the input of cameras
on the devices. On mobile devices, these cameras can also be
used to approximate lighting conditions present in the scene.
There is much research related to improving real-time light
and shadow approximations for AR applications on mobile
devices.

Unfortunately, many wearable AR devices, (Oculus Rift,
HTC Vive, etc.) do not allow applications to access data
from the cameras, which significantly limits the ability of
the developer to replicate the environment’s lighting [1]. Any
lighting present in applications built for these devices must
be pre-baked into the application. Most AR experiences are
built to be used under a wide variety of lighting conditions.
For these apps, the only real solution is to choose a suitably

pleasing and generic lighting setup and hope it looks good for
most users. Certain applications, however, are designed to be
run under specific lighting conditions. These apps can bake
in lighting conditions to increase the cohesion between digital
and physical objects. One such setting where it would be very
desirable to replicate an environment’s lighting conditions is in
AR-enhanced stage plays. Stage plays typically use a few set
lighting conditions and swap between them as needed. Some
applications just model all of the lighting conditions virtually
[2], but this only really works for simple scenarios. To replicate
stage lighting lighting conditions, developers would need to
find the position of each spotlight, and then painstakingly
figure out their color, angle, and intensity. (Note: Some stage
lighting systems do allow for this data to be exported, but
many venues do not have this capability). While it may be
possible for some of these values to be calculated, this would
likely either require specialized equipment, or immense effort
from the developers.

A commonly used method for replicating the lighting
conditions of a scene is HDR environment mapping. This
technique involves taking a few images of a reflective sphere
and stitching them together to create a spherical light source
around the scene [3]. HDR environment maps are great at
modeling diffuse lighting and reflections, but can struggle
to model precise details or handle highly directional light
sources. For most applications, this is not a problem, but for
a stage with lots of spotlights, this is a deal breaker. An HDR
environment map captured from the center of a stage would
not be able to accurately map the lighting of lights illuminating
other parts of the stage. To generate more accurate appearing
lighting, this paper aims to model the lights themselves.

This paper proposes a methodology that uses a genetic algo-
rithm to find the color, angle, and intensity of pre-positioned
spotlights in a scene. Developers would have to map the ge-
ometry of the stage and find the location of the lights, but this
data would only need to be taken once and could be re-used
for subsequent plays. From there, developers would take an
image of the stage under un-lit conditions, and a second image
under lit conditions. (Note: This may be changed for the final
project). From this, the light value at location on the stage can
be calculated. Then, we use the genetic algorithm to generate
different configurations of the lights, comparing how they light
the stage to our ground truth. Once a sufficiently accurate
solution is reached, the lighting configuration is saved, so that

Rochester Institute of Technology 1 | P a g e



RIT Computer Science • Capstone Report • 20171

it may be loaded in as necessary. Primarily, this project focuses
on creating a pipeline for developers to load stage lighting into
Unreal Engine applications for AR-enhanced stage plays. This
paper begins by reviewing several other approaches to lighting
replication, and the limitations of these methods. Then, we
detail the design of the system that optimizes spotlights for
stage lighting. After this, we performed a thorough analysis
of the results to draw conclusions about shortcomings of this
methodology, and present a number of possible improvements
and alternate methods.

II. BACKGROUND

There has been much research into various methods to
replicate lighting conditions in computer graphics applications
and augmented reality.

A. Stage Lighting

Stage lighting offers a unique lighting environment with
specific goals and restrictions. The primary goals of stage
lighting are to highlight the action, inform the mood, and
set the scene [4]. To highlight action, it is important that
the characters are well-illuminated and cast clear, defined
shadows to make them “pop” off of the stage. This means that
lighting generated must be high-contrast, sharp, and directional
so as to brightly illuminate and cast clear, dark shadows.
Action can be highlighted with character-focused lights that
follow the actor’s moves, but motion is out of scope for this
project. Informing the mood is generally done by playing off
of human perceptions of color, so generated lighting must
be color accurate. Finally, some plays use lighting to inform
the audience of the location of the scene. Some examples
include using different hues and intensities of light to show
different times of day, or shining the light through the branches
of a tree to make the scene take place in a forest. These
effects are possible as long as our generated lighting has
crisp shadows and accurate colors, and relevant geometry is
precisely modeled. A number of other effects are possible
with the use of filters, which can shape the lights or add
textures. These effects are out of scope for this project, but
could be implemented by uploading an image of the filter
used. Since the target application is for AR-enhanced plays,
more complicated effects that would generate light are likely
to be handled by the computer, and thus would not need to be
replicated.

Based on the common conditions of stage lighting, a number
of assumptions can be made to refine attempts at replication.
While many different lights are used to produce a variety of
effects on stage, this paper exclusively focuses on hard-edged
spotlights, and lumps all general light sources into a single
“ambient” source. While this is done partially for simplicity,
it also focuses on replicating the most noticeable part of
stage lighting; the sharp regions of light and dark produced
by spotlights. Additionally, stage lighting almost exclusively
points at the stage, and is reflected to the audience. This means
that we do not really need to consider the lighting conditions
or geometry of the area outside of the stage. This also means

that lights that do not illuminate the stage do not need to be
considered.

B. Lighting Replication Methods

With the assumptions in mind from above, we can look at
a number of other approaches to lighting replication to see
how they can be applied to this specific problem. Zhao et
al. [5] designed a real-time lighting estimation procedure for
AR applications on mobile devices. This approach begins by
constructing a point cloud that represents the light levels at
the surface of each point in the scene. From there, the light
direction and diffuse components are estimated using a neural
network. This estimation is used to generate an environment
map centered around virtual objects. For stage applications
on mobile devices, this methodology could likely be applied
in concert with modeled spotlights to generate good looking
diffuse lighting. For projects designed for wearable devices,
this is not feasible, since they do not allow developers to access
their cameras.

Gardner et al. [6] create a method for indoor lighting
prediction that uses only a single image as input. They start by
using a deep neural network to generate a complete 360-degree
panorama and an HDR environment map based on the input
image. Another neural network is used to detect and classify
the light sources in the panorama. Each light is labeled as a
spotlight, lamp, window, or reflection. The HDR environment
map is then used to estimate the intensities and direction of the
located lights. This method is generally very good at creating
lighting conditions that look reasonable to other viewers, with
no obvious flaws or mistakes. Somanath et al. [3] build on this
method by improving the training method to better replicate
specular highlights using adversarial loss. Even with these
improvements, there are still significant limitations to this
approach. First, the network struggles to accurately portray
lights that are not in the image. This is to be expected, since
it must rely on a prediction of the rest of the scene to predict
the location and size of these lights. Secondly, this method is
ill-suited to finding the boundaries of sharply lit areas, since it
only accounts for light that would strike the simulated object.

This method would likely not be suitable for predicting
stage illumination, for a few reasons. Most importantly, the
spotlights that we seek to identify can often be stark and
sharp, with clearly visible boundaries on the stage. Soft, fuzzy
lights are generally not able to cast the sharp, precise shadows
that are commonly cast on the stage. Additionally, the step of
extrapolating the image to create a panorama would not be
needed in this scenario. The bright illuminants would occur
from the stage or light sources with known locations. A
single image could contain all of the necessary information
to replicate the lighting conditions of a stage.

Neural networks and other forms of machine learning are
very commonly applied to the problem of lighting replication.
They have been shown to produce good results and can be used
flexibly. It is likely that a neural network could be designed
to position and angle spotlights accurately. The problem with
these approaches is that they require a large database of images

Rochester Institute of Technology 2 | P a g e



RIT Computer Science • Capstone Report • 20171

associated with accurate lighting replications. No suitable
database was found for this project, and so machine learning
was not a viable approach.

Another approach for lighting replication was developed by
Lopez-Moreno et al. [7]. This method attempts to find the
number of lights, their angles, positions, and intensities based
on data obtained from an object with known geometry in the
scene. First, they map the light information from the pixels to
the object, associating each location with an intensity and a
surface normal. Using a k-means clustering algorithm, areas of
shadow and light are separated. This algorithm also estimates
the direction of the lights by checking the relative intensity
against the normal vectors. From there, they calculated the
color of ambient light from the identified shadow regions. This
method generates a number of light sources that illuminate
the target object and others in the area. They go on to apply
these generated light sources onto a target image to illuminate
it in a different way, but the relevant portion to this project
is the generated light sources. The lighting generated by this
approach is not perfectly accurate, but is more than sufficient
for static images. Additionally, the approach functions best
when a relatively complex, precisely modeled object is present
in the input. This method could likely be applied to stage
lighting and could produce solid results, but might require
complex geometry to be placed over the entire stage and
modeled.

A paper by Madias et al. [8] applied a genetic algorithm
to indoor lighting optimization. The authors sought to use
the least amount of electricity possible to evenly light a
room above a certain threshold. Solutions were evaluated by
checking the light level at various points in the room with
light sensors. This methodology generated very efficient and
uniform lighting of the target levels, effectively replicating the
ideal lighting conditions of the author. This project is sig-
nificantly more complex, requiring the optimization of color,
angle, and size of the lights. For an optimization algorithm
to work effectively, each solution would need to be evaluated
far more precisely. Fortunately, while their testing was bound
by the limitations of reality, this project is set in the digital
world. What this means is that we can check the accuracy of
the light generated by our solution at any number of points in
the scene.

Many possible solutions have been tested to replicate the
lighting conditions of an environment. Generally, existing so-
lutions are effective at producing conditions with similar levels
and colors of light, but struggle when presented with sharp
contrasts of light and shadow. Contrast is extremely important
to stage lighting, so a new methodology was developed.

III. DESIGN AND IMPLEMENTATION

The goal of this paper is to create a process and tools that
allow other developers to replicate stage lighting in their own
projects. As such, the project was developed as an Unreal
Engine Blueprint library, allowing for native integration into
most AR applications. The process used to replicate stage
lighting can basically be broken down into the following steps:

1. Model the stage and find the locations of the spotlights.
2. Capture an image of the fully illuminated stage and an
additional image for each desired lighting condition (All
images must be from the same location at the same angle).
3. Find the light color and real color at each point on the stage
based on the images.
4. Use differential evolution to find the optimal angle, color,
intensity, and cone-angle of each spotlight
5. Switch between lighting setups as needed by the application.
Modeling the stage and capturing images happen outside of
the code, and are relatively self-explanatory. For this project,
I carefully measured the stage of the Wegmans theater and
the distance to the location I captured from, then calculated
the angle I took the images at. From the measurements, I was
able to reconstruct a rudimentary scale model in blender and
import it to Unreal Engine.

A. Calculating colors on the stage

To calculate the level of light at each point on the stage,
we can perform a raytracing-like process. We know the field
of view of the camera, which tells us the maximum deviation
from the base orientation of the camera. This gives us a range
of angles that all pixels in the image fall between. Based on
this, we can then cast rays out from the camera that pass
through the center of each pixel. When these rays hit a piece
of stage geometry, we can associate the color information in
the image to that location. Right now, all that we can find is the
true color of each location, as well as the desired color, so we
store those into a structure called a LightPoint that associates
the two colors to the location on the stage. The LightPoints
generated in this step are used to check the optimality of
solutions in the differential evolution step. These colors are
stored as 3D vectors based on their RGB values. We must store
both values, since we can’t determine whether the color of a
pixel is due to the light hitting it, or the color of the object. In
figure 1 you can see a red ball and a white ball with a white

Fig. 1. A red and white ball illuminated by a white light

Fig. 2. A red and white ball illuminated by a red light

Rochester Institute of Technology 3 | P a g e



RIT Computer Science • Capstone Report • 20171

TABLE I
A VISUALIZATION OF A LIGHT MAP GENERATED FROM TWO INPUT IMAGES

Fully Illuminated Target Illumination Light Map

light shining on them, making their true colors obvious. In
figure 2, a red light is shown on both balls, making both appear
red. When optimizing spotlights, we may find that, instead of
shining a red light onto both, a white light is shone on the red
ball and a red one on the white ball. To prevent this, we must
pass both colors through to future calculations. For this to be
useful, we must assume that all parts of the stage are subject
to roughly even levels of light in the fully illuminated image.
Otherwise, developers would first have to calculate the lighting
conditions of their fully illuminated room, which is a harder
task than the one solved by this method. In this approach,
there could be significant errors if the images do not match
up perfectly. Around the edges of objects or shadows, a few
pixels could lead to a chunk of the stage having erroneous
lighting calculations. As such, it is important to ensure that
the images are taken at the same location. Table I shows an
image of the target light level at each point. The small offset
between the two input images caused by human error results
in some minor error in the Lightmap. In general, small errors
in this step should not significantly contribute to errors in later
steps.

B. Genetic Algorithm
The goal of this step is to optimize the spotlights such

that they recreate the desired lighting conditions. To do this,
we use a genetic algorithm. Genetic algorithms are a family
of optimization techniques based on the process of natural
selection which are useful for dealing with problems of high
dimensionality [9], [10]. In a genetic algorithm, a population
of solutions are created, where each solution contains a list of
“genes” that correspond to the variables being modulated in
the problem. From there, the solutions that are measured to be
the best move on to the next generation. Additional solutions
are made via crossover, in which two solutions are combined
to produce one new solution. Then, all solutions are randomly
mutated, which means that their genes are randomly modified
slightly. For this problem, we represent each spotlight with
a static 3D vector representing its position and an array of
seven floats. These floats represent the location on the stage
the spotlight points to, its color, and its outer cone angle,
as outlined in Figure 3. Our solution vector is an array of
spotlights, meaning that the dimensionality of our problem

is 7n, where n = #spotlights. There are many variations
of genetic algorithms, but the implementation used for this
problem is relatively basic.

Fig. 3. The float vector representing a spotlight

1) Solution Initialization: First, we calculate the boundaries
as defined by our LightPoints. Currently, we operate under the
assumption that all spotlights must be pointed somewhere on
the modeled stage geometry. While it is definitely possible for
lights to be pointing into the audience, or even point at a point
just off stage so that they still affect the stage, allowing lights
to point where we don’t have data would result in a undesired
effects. From the programs stand point, there is no difference
between a light point that is two feet off stage left and a light
shining directly into the audiences eyes. As such, we restrict
the lights to pointing onto the stage. Also at this point, we
calculate an ambient light, which is the maximum light level
possible that does not cause any LightPoints to be a color
brighter than desired. At this point, we can randomly generate
our starting population. We ensure that all values generated fall
in an acceptable range, based on the minimum and maximum
sensible values. In addition to the direction, we can also restrict
the intensity. There is no way to turn on a spotlight in such
a way that it subtracts light from a scene, so the minimum
value for each RGB component of color is 0. Currently the
maximum is set at two, which means that no individual spot
light is providing more than double the amount of light present
on a fully lit stage. This could in theory be inaccurate, but I
think that the maximum brightness in most reasonable systems
will be very close to that of the fully illuminated stage, capping
out around one. Additionally, the cone angle was restricted to
a range of 5◦−70◦, which encompasses almost all commercial
spotlights[4], and prevents spotlights from being used by the
algorithm to reproduce small specular highlights that may have
been present in the image.

2) Selection and Crossover: Now, we finally begin the
optimization process. The first step is selecting the top per-
forming solutions. In this program, we simply select the top
50% of the solution space. There are more advanced methods

Rochester Institute of Technology 4 | P a g e



RIT Computer Science • Capstone Report • 20171

TABLE II
A COMPARISON OF TESTED SCORE EVALUATION METHODS

400 GENERATIONS, 50 RESTARTS, POP. SIZE = 60

Linear Error Squared Error Sqrt. Error Log Illum, Squared Color

for this, but performance based selection generally works
well enough. The solution vectors then undergo crossover to
restore the population to its original size. Random pairs of
solutions are selected to undergo crossover. A new solution
is created with genes based on the two in the pair. In this
program, there is a 40% chance of selecting a gene from
either parent vector, and a 20% chance of taking the average
of the two. This process helps search the spaces between
strong solution vectors, performing more of the “exploiting”
part of the “exploring and exploiting” action at the heart of
optimization algorithms.

3) Mutation: After repopulation, each vector undergoes
random mutation. This serves the purpose of exploring more
of the solution space. Each individual gene has a small chance
to mutate, and can jump a maximum of ¼ of the range for
that gene in one mutation. In addition, each spotlight in a
solution vector has random chance to swap all of it’s genes
with another spotlight. The reason this is done is to move
out of local optima where two spotlights are pointing at spots
that the other should be pointing at. By swapping the location
they look at, their color, and cone angle, only the shape of
the illuminated area is altered slightly, while the genes in the
solution appear to have undergone a massive shift. Despite
the two solutions appearing similar to outside viewers, the
genetic information that produces them are quite different.
This mutation procedure allows the algorithm to explore these
similar solutions much easier than it would otherwise be able
to. After all the genes are mutated, the top performing solution
found so far is inserted into the population, assuming it was
not already in there.

4) Using the Results: This procedure of selection,
crossover, and mutation repeats for a number of iterations,
and then the top performing solution vector is returned. To
ensure that developers do not have to re-optimize their lights
every time they run the program, this value is saved to a .json
file, which can be loaded to set all of the relevant variables
for each spotlight. If a developer was attempting to recreate
multiple light settings, all they would need to do is calculate
the light map for each pair of images and optimize for each
image. They could then load in multiple light settings at the
start of a program, allowing them to be swapped between in
runtime.

5) Solution Evaluation: The most consequential part of
this project is the solution scoring portion. The first step is
to determine the amount of light from each source that is

illuminating a given light point. This can be done using simple
light emission calculations. While it would be ideal to use
Unreal Engine’s lighting engine for these calculations, this is
not possible. Additionally, I could not find exact methodology
for how Unreal Engine calculates light, so our calculations
do not perfectly reflect the appearance of the lights in the
actual scene. They are close enough that this is not a big issue,
however. We then use the light effecting that source multiplied
by the color present in the base image to calculate a new color.
This color is then compared to the target color to generate a
score. There are an extremely large number of methods that
could be used to compare the two colors. For the purposes of
this project, a linear difference was used. Originally, I used
the squared difference, or squared error, but this resulted in
solutions with reduced contrast. I also tested square root error
to see if this would cause the solution to focus more on getting
extremely close to targeted illumination values. This may have
worked, but resulted in less accurate colors. A final method
tested was to calculate the difference in brightness and the
difference in color separately. Generally, a small difference in
color is significantly easier to detect than a similar difference
in brightness. As such, this method added the logarithmic
difference in brightness and the linear difference in color.
While the idea behind the method was solid, it resulted in
terrible colors and terrible brightness.

As you can see in Table II, the differences between each of
the methods was minimal, except for logarithmic brightness
and linear color. Out of the methods that produced reasonable
appearing results, I chose to use the linear difference scoring
method. This is because the results appeared to be the best, and
because it is the most understandable metric. Constant across
all of these methods is that perfectly matching every point
gives the best possible score, 0, and lower scores are always
better. There are likely countless more methods that could have
been used to assign a score to the lighting results, but in the
end, I ended up moving forward with linear difference. It is
very likely that a better scoring method could have been used,
and would have resulted in better results.

IV. RESULTS

The methodology described above was tested on two
images captured from the Wegmans Theater at RIT, and a
second scenario generated in Unreal Engine. All images input
into this method were compressed to 1/8th their original size

Rochester Institute of Technology 5 | P a g e



RIT Computer Science • Capstone Report • 20171

TABLE III
A REAL-WORLD TEST CASE OF RIT’S WEGMANS THEATER, OPTIMIZED BY OUR GENETIC ALGORITHM METHOD

400 GENERATIONS, 50 RESTARTS, POP. SIZE = 60. TIME TO RUN = 30 MINUTES

Ground Truth Our Method. Score: 0.06 Our Method (Fixed Position). Score: 0.08

TABLE IV
A SIMULATED TEST CASE PRODUCED IN UNREAL ENGINE FEATURING 2 SPOTLIGHTS.

400 GENERATIONS, 50 RESTARTS, POP. SIZE = 200. TIME TO RUN = 3 HOURS

Ground Truth Our Method. Score: 0.21 Our Method (Fixed Position). Score: 0.28

to improve the speed of the algorithm.

This algorithm can produce results that are fairly close in
terms of color and intensity, but struggles to have them cover
the entire lit area. This is due to the scoring procedure, which
appears to incentivize spotlights shining only on the brightest
parts of the image and increasing the brightness of the ambient
light to compensate. The scoring procedure does not appear to
represent reality as well as ideal, results that look significantly
worse to the human eye can score much better. As you can see
in Table III, the test with fixed location appears far closer to the
ground truth, yet has an error score 0.02 higher than the fully
optimized test. It is also possible that this discrepancy was
caused by the image capture methods not accounting properly
for specular highlights or reflected light. That being said, the
dull gray carpet of the theater should not have produced bright
highlights. When the angles of the spotlights are fixed, the
genetic algorithm produces results that appear very accurate
in terms of color, spotlight size, and intensity since it is more
difficult to overfit to the brightest parts. Additional tests were
run while fixing the outer angle of the spotlight, but this did
not improve results in this case.

The multi-light tests in unreal engine further show the
tendency of the algorithm to overfit to the bright parts.
Examining Table IV shows the two spotlights covering a
smaller range than the target image and the ambient color
being made brighter to compensate. While the camera matchup
was far more accurate for this test, it is possible that the bright
reflective stage surface increased the error due to specular
highlights. Interestingly enough, the fixed location test looks
less accurate, despite ensuring that the spotlights were fixed at

the correct locations. It is possible that increasing the number
of generations would have helped improve the results, but
the fixed location test showing worse results would suggest
otherwise.

This method is very computationally expensive, taking
multiplicatively longer based on the number of runs, gen-
erations, population size, input image size, and number of
lights in the scene. Since each light added also adds another
seven dimensions to the solution space, the time to converge
increases dramatically with additional lights. This means that
the number of runs, generations, and population size must be
increased to allow the solution to converge, further increasing
the run time of the algorithm. In addition to the two test cases
above, a six spotlight case was attempted, but scrapped due
to the multi-day convergence time. In most cases, a developer
will be able to estimate a reasonably accurate solution far, far
faster than this algorithm can.

V. CONCLUSION

Overall, this method was unable to produce satisfactory
results unless under significant constraints. I think that the
inaccurate results could be fixed by improving the solution
evaluation method. The algorithm did not seem to be getting
stuck in local optima too often, and was able to produce
very similar results when ran multiple times in a row, so
the genetic algorithm portion of the project is performing
well. The optimization algorithm generates solutions with
relatively low error scores, but the scoring function does not
represent what we want it to. Using an optimization algorithm
to replicate stage lighting shows some amount of promise, and
has much more room for exploration. This implementation

Rochester Institute of Technology 6 | P a g e



RIT Computer Science • Capstone Report • 20171

is also far too slow to be really useful. The process of
measuring the stage and capturing images of the lit scene
already requires developers to have physical access to the
environment. Developers would be able to manually measure
and recreate the lighting of their target scene faster and more
accurately than this approach. For now, developers looking
to replicate stage lighting in their project should take careful
measurements and attempt to manually replicate the lighting.

VI. FUTURE WORK

There is much future research to be done on this topic, both
in terms of improvements to this method, and other methods
that may produce better results.

A. Improvements

The most obvious way to get better results out of this project
would be to use a more advanced solution scoring algorithm.
While it is easy to verify a solution as correct based on the
light mapping data, it is far more difficult to decide whether
one solution is better than another. This project only tested a
few simple variations on the difference between the light levels
at each point and was unable to produce a usable replication
of lighting. There are many metrics and analytics that could
be used to better score a solution. The speed of solution
evaluation also could have been dramatically improved by
utilizing the GPU. The algorithm is structured in a way that
would allow for the entire step of solution evaluation to be
parallelized, which could allow for results to be generated in
a matter of minutes, not hours.

Another improvement would be to the light mapping algo-
rithm to reduce noise and variation due to different surfaces.
While the approach used by this project accounted for the
different color of materials, it still produced results with
a lot of noise and variance between pixels that should be
receiving the same light value. Some of this could be solved
by using better capture techniques and ensuring that the two
images were captured from exactly the same place. Some pre-
processing steps may also be helpful. For each test in this
project, I was compressing the input images to speed up the
results. This effectively acted as a method of sampling the
image to reduce the amount of light level checks at nearly
identical locations. It is likely that a more clever sampling
method could be used to dramatically reduce the number of
tracked light points without sacrificing any information. In
addition, using information from neighboring pixels could also
allow for smoother images that more accurately represent the
human perception of the scene.

It may also be possible to gain additional information
from the evaluation calculation to better hone the solution.
Currently, each solution is mutated randomly, but we could
calculate the manor of error in each spotlight and mutate
related to that. For example, one spotlight might not add
enough light to any of the points it affects, so we could
increase the odds of mutations that boost it luminance. Another
spotlight might be too bright for points only on the left side,
so we would emphasize mutations that point it further to the

right. This would likely increase the speed of convergence, but
could lead to the algorithm getting stuck in local optima.

B. Other Methodologies

Another relatively simple approach to replicating stage
lighting could make use of the fact that most spotlights project
their light onto the stage in the form of an ellipse. By using
a circle or ellipse detection algorithm on the initial image,
the boundaries of each lit area could be found. From there, it
might be possible to calculate the outer angle and direction of
each spotlight based on the shape of the ellipse, and the color
and intensity based on the pixels contained therein.

Another approach might be to use a machine learning
algorithm. By constructing a database of illuminated stages
and their lighting conditions, it may be possible to train an
algorithm to generate ideal results. Multiple previous papers
have had success using machine learning to generate HDR en-
vironment maps [6], [3] or otherwise refine estimated lighting
conditions. It would not be surprising if a machine learning
approach was able to efficiently replicate stage lighting as well.

ACKNOWLEDGMENT

I would like to thank Dr. Joe Geigel for his help and
guidance throughout the entire process of developing this
project. His insights and ideas were valuable in formalizing
the idea and methodology that allowed this project to come
together.

REFERENCES

[1] Meta. (2024, Sep.) Passthrough api overview. Website. [Online]. Avail-
able: https://developers.meta.com/horizon/documentation/unreal/unreal-
passthrough-overview/

[2] N. Sugano, H. Kato, and K. Tachibana, “The effects of shadow repre-
sentation of virtual objects in augmented reality,” in The Second IEEE
and ACM International Symposium on Mixed and Augmented Reality,
2003. Proceedings., 2003, pp. 76–83.

[3] G. Somanath and D. Kurz, “Hdr environment map estimation for real-
time augmented reality,” in 2021 IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR). Los Alamitos, CA, USA: IEEE
Computer Society, jun 2021, pp. 11 293–11 301. [Online]. Available:
https://doi.ieeecomputersociety.org/10.1109/CVPR46437.2021.01114

[4] K. Stamp. (2023, Aug.) Stage lighting design, part 2: Objectives of light-
ing design. Blog. [Online]. Available: https://blog.etcconnect.com/stage-
lighting-design-part-2-objectives-of-lighting-design

[5] Y. Zhao and T. Guo, “Pointar: Efficient lighting estimation for
mobile augmented reality,” in Computer Vision – ECCV 2020: 16th
European Conference, Glasgow, UK, August 23–28, 2020, Proceedings,
Part XXIII. Berlin, Heidelberg: Springer-Verlag, 2020, p. 678–693.
[Online]. Available: https://doi.org/10.1007/978-3-030-58592-1 40

[6] M.-A. Gardner, K. Sunkavalli, E. Yumer, X. Shen, E. Gambaretto,
C. Gagné, and J.-F. Lalonde, “Learning to predict indoor illumination
from a single image,” ACM Trans. Graph., vol. 36, no. 6, Nov. 2017.
[Online]. Available: https://doi.org/10.1145/3130800.3130891

[7] J. Lopez-Moreno, S. Hadap, E. Reinhard, and D. Gutierrez,
“Compositing images through light source detection,” Computers
Graphics, vol. 34, no. 6, pp. 698–707, 2010, graphics for
Serious Games Computer Graphics in Spain: a Selection
of Papers from CEIG 2009 Selected Papers from the
SIGGRAPH Asia Education Program. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0097849310001299

[8] E.-N. D. Madias, P. A. Kontaxis, and F. V. Topalis, “Application of
multi-objective genetic algorithms to interior lighting optimization,”
Energy and Buildings, vol. 125, pp. 66–74, 2016. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0378778816303553

Rochester Institute of Technology 7 | P a g e



RIT Computer Science • Capstone Report • 20171

[9] Bilal, M. Pant, H. Zaheer, L. Garcia-Hernandez, and
A. Abraham, “Differential evolution: A review of more than
two decades of research,” Engineering Applications of Artificial
Intelligence, vol. 90, p. 103479, 2020. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S095219762030004X

[10] D. Fogel, “An introduction to simulated evolutionary optimization,”
IEEE Transactions on Neural Networks, vol. 5, no. 1, pp. 3–14, Jan
1994.

Rochester Institute of Technology 8 | P a g e


