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I. Task Definition, Evaluation Protocol, and Data. 
Knowledge graphs are graphical data models, “…that capture information in applied scenarios that entail 
the integration, extraction, and management of data at a large scale from different diverse sources…” [1], 
[2]. A graph is understood to be a set of nodes with edges describing relationships between nodes [3]. A 
knowledge graph can typically be described by the triple (s, r, o) where s and o are the subject and object 
(both nodes), and r is a relationship, or an edge [4]. It should be noted that subjects and objects are the same 
set of nodes in a graph, but a relationship between nodes defines whether a node is a subject or an object in 
a relationship. A knowledge graph can be as simple as one (s, r, o) tuple, but commonly complex knowledge 
graphs are a set of (s, r, o) triples that describe an entire system. Knowledge graphs contain a limited subset 
of knowledge of what is true in the world [5]. 
 
A challenge in using knowledge graphs is that links between subjects and objects are often missing. Link 
prediction, “...aims to achieve novel links for an established knowledge graph and existing links with other 
entities” [5]. Link prediction determines the edges in a graph when information is incomplete. Link 
prediction’s utility is dependent on the graph being described. In common applications, such as 
recommendation systems, spam mail detection, and privacy control in social networks, prediction of 
relationships between a subject and an object before they interact [6], [7]. In applications, like network 
reconstruction or source identification in published works, missing links are filled in and extraneous links 
are pruned to construct a more accurate graph than the input [6]. An example of link prediction is predicting 
the relationship between a subject (i.e., Lionel Messi) and an object (i.e., Argentina) (see Fig. 1.). 
 

 
Fig. 1. An example of link prediction is presented. In this example the relationship between the subject 
(i.e., Lionel Messi) and the object (i.e., Argentina) is unknown and being predicted using link prediction. 
 
Link prediction assessment metrics for knowledge graphs include mean rank (MR), mean reciprocal rank 
(MRR), and hits-at-k (hits @ k). MR is the average rank of the ground truth triples when ranked based on 
predicted value [8]. MRR is calculated by finding the reciprocal index of the highest rank correctly 
predicted data point and averaging the results [8]. To find the reciprocal index, the solutions proposed by 
the link prediction algorithm are ranked according to probability and the index of the first correct answer is 
determined. The reciprocal of the index is taken. This metric measures how far the first correct answer is 
from the highest rank. Values closer to one are considered more optimal. Regarding the metric hits @ k, 
various “k” values are selected, where k is an integer. The k highest probability predictions are then 
retrieved as a subset. This subset is analyzed to determine the percentage of correct k-link predictions. This 
metric accounts for a balanced analysis of performance by analyzing k-predictions, rather than analyzing 
the single most probable prediction, like MRR. 



As previously noted, link prediction datasets describe, at a minimum, a single (s, r, o) relationship. The 
datasets used by Dettmers et al. have several relationships (“r”) of different types relating subjects and 
objects, common to many canonical datasets. The link prediction datasets used for evaluation include 
WN18 [9], a subset of the WordNet consisting of word relationships, FB15k [9], a subset of freebase 
containing knowledge base relations, YAGO3-10, a subset of YAGO3 [10] containing personal attribute 
relations, and Countries [11], which tests for long-range dependencies on geospatial relationships. 

Dettmers et al. [4] note that the data sets WN18 and FB15k suffer from test leakage through inverse 
relations, an issue that contaminates training instances with test instances. To avoid this issue Toutanova 
and Chen [12] present a subset of FB15k, called FB15k-237 where inverse relations are withdrawn. 
Dettmers et al. also discovered similar leakage in WN18. The authors establish WN18RR as a subset of 
WN18, with 93,003 triples, 40,943 entities, and 11 relations, to resolve this issue [4]. 

II. Neural Network Machine Learning Model 
The authors propose ConvE, a multi-layer convolutional network model for link prediction for knowledge 
graphs [4]. Interactions among entities and relationships are modeled through convolutional and fully 
connected layers. A significant contribution of ConvE is the use of 2D convolutions over embedding to 
achieve the prediction of the missing links. ConvE is composed of three layers: a single convolution layer 
over 2D-shaped embedding, the projection layer onto the embedding dimension, and an inner product layer 
(see Fig. 2) [4]. 
 

 
Fig. 2. Architecture of ConvE Model [4] 

At a high level, ConvE first converts the triple describing a link to a token, or a numeric representation of 
the (s, r, o) triple. These factors are the entities “s” and “o” 𝜖	𝜀, that refer to a subject and object, where r 
∈ 	𝑅 is the relationship amongst them [4]. Following tokenization, the model embeds and then concatenates 
the s and r components. It then performs batch normalization and a dropout operation to prevent overfitting. 
The output is then sent through a convolutional layer with multiple output channels. The convolutional 
layer applies a linear function shifted over the embedded inputs [13], [14]. Including 2D convolution allows 
for the extraction of more feature interactions between the embeddings than a 1D-convolution would be 
able to achieve [4]. Additionally, the inclusion of multiple convolution output channels allows for the model 
to learn more “expressive” features without resulting in the exponential growth in memory requirements 
associated with shallow neural networks. 
 
Following convolution, the outputs are batch normalized and a ReLU activation function is applied; the 
authors note this is intended to speed up training. Then, another dropout layer is applied, and the output is 
manipulated into a 1-D tensor. This output is passed through a fully connected linear layer which is followed 
by another dropout layer and batch normalized. Again, a ReLU activation function is applied. The output 



undergoes matrix multiplication with the embedding weights of o, or 𝑒!, and is summed with the bias. 
Following the application of a sigmoid function the predictions are determined. The model is trained to 
minimize binary cross-entropy loss using stochastic gradient descent. The model results in a scoring 
function which can be summarized as 𝜓(𝑠, 𝑟, 𝑜) = 𝜓"(𝑒#, 𝑒!) ∈ 	𝑅 determined by the relationships between 
the embedded entities 𝑒# and 𝑒! (see Eqn. 1) [4]. In this formula, 𝑓(𝑣𝑒𝑐(𝑓([𝑒#3 ; 𝑟"3] ∗ 𝜔))𝑊) is the learned 
function. 
 
Equation 1 

𝜓"(𝑒#, 𝑒!) = 𝑓(𝑣𝑒𝑐(𝑓([𝑒#3 ; 𝑟"3] ∗ 𝜔))𝑊)𝑒!  [1] 
 

In Eqn. 1.,  𝑟! 	 ∈ 	𝑅" represents a relation parameter that is dependent on r. Meanwhile, 𝑒#) 	and 𝑟!)  represent the 2D reshaping of 𝑒# and  𝑟#. 

 
Minimizing the number of convolution operations allows for a speed-up in computation time [4].  
Convolution in Dettmers et. al.’s architecture [4] utilizes between 75 and 90% of the entire computational 
time in model evaluation. Increasing batch size to accelerate the evaluation speed is a commonly used tactic 
in link prediction models [15]. However, this is not feasible in convolutional models, as the required 
memory will rapidly grow larger than the GPU memory capacity when increasing the batch size [4]. 
 
Another novel contribution of the ConvE is a scoring procedure that uses a pair (s, r) and scores it against 
all entities 𝑜 ∈ 𝜀 at the same time. This implies a scoring of (1-N), unlike traditional link prediction models 
that take the entity pair and the relation as a triple of (s, r, o) and score it in a 1-1 system. This alternative 
(1-N) scoring procedure trains 3 times faster and evaluates 300 times faster than previous methods [4]. 
 
A faster forward and backward pass could be achieved if the scoring method used were 1-(0.1N) (i.e. 
scoring vs 10% of the entities). However, convergence would be 230% slower on the training set. In electing 
to use a (1-N) scoring method, Dettmers et al. obtain a higher convergence speed at the cost of lost 
computational performance [4]. 
 
Various hyperparameters exist in ConvE which must be considered. Such parameters included the 
embedding dropout, feature map dropout, projection layer dropout, embedding size, batch size, learning 
rate, and label smoothing. The dropout parameters can be manipulated to prevent overfitting [16]. 
Embedding size in this instance refers to the fully linear layers. As noted, Dettmers et al.’s approach uses 
convolution in an attempt to reduce the need the increase embedding size to achieve higher performance. 
Therefore, an increase in embedding size should be avoided. 
 
The neural network proposed by Dettmers et. al. [4] provides a novel convolutional model for link 
prediction.  The scoring method allows for an efficient prediction of relations between entities. The 
integration of convolution in the link prediction task allows for the model to reach a high degree of accuracy 
without infeasible memory requirements. 
 
III. Experiment Design 
A drawback of Dettmers et al.’s [4] approach is that each model is trained independently for a specific 
dataset, which requires a large amount of time. For example, for new datasets, the model is initialized with 
random weights, as it would be when trained for the first time. However, sections of the neural network are 



dimensionally invariant from dataset to dataset. Therefore, a proposed method to address this is the use of 
transfer learning (TL), or the use of previously learned information (i.e., weights) in a new model [7]. 
Formally, TL is learning, “...which involves methods that utilize any knowledge resource…to increase 
model learning and generalization for the target task” [7]. In the context of ConvE, it is believed that 
initializing the model weights at the start of training with weights learned from a different dataset, rather 
than initializing them randomly, would allow the model to reach equivalent performance in less time. 
 
Therefore, the modification is an identification of any weights in ConvE’s network architecture that are not 
dependent on the shape of the input data set (e.g., the 2D-convolution weights). Such weights include the 
2D-convolutional layer, the first, second, and third batch normalization layer’s biases and weights, and the 
final fully connected layer’s weights and biases. It is believed the weights on these sections of the neural 
network could be used as improved starting weights for model training on a new dataset. In this experiment, 
the model is trained for a given dataset, referred to as the learning dataset (e.g., FB15k-237). Upon training 
completion, the dimensionally invariant weights will be used to initialize ConvE at the start of training for 
another dataset, which will be referred to as the TL dataset (e.g., WN18RR) (see Section I for a detailed 
description of these datasets).  
 
The experiment will be conducted on two datasets. The dimensionally invariant weights from a model 
trained on FB15k-237 will be used to initialize training for WN18RR, and vice versa. To ensure that model 
performance is similar, an analysis will be performed on the following statistics following training: MR, 
MRR, hits @ 10, hits @ 3, and hits @ 1. These statistics will be determined from the test dataset. Further, 
total training times will be analyzed. An early stopping procedure will terminate training when the training 
loss for the model initialized with weights from TL is approximately equal to the loss for the model 
initialized with random weights on the same dataset and trained for 1000 epochs. If the stopping criteria is 
not met, the model will be trained for 1000 epochs, as was the default in [4]. The proposed hypothesis can 
be seen in Table 1 and conditions for confirmation, contradiction, or unclear results are noted. 
 
The required code changes are included in Table 1. At a high level, these code modifications will function 
to identify neural network weights from the learning dataset which are dimensionally equivalent to the 
neural network weights for the TL dataset at epoch = 0. These weights will be used to initialize the neural 
network being trained on the TL dataset. It should be noted that all hyperparameters as described in Section 
IV are not intended to be modified. 
 

Table 1: Proposed Modifications Experiment Summary 

Hypothesis Introducing TL by initializing a neural network's dimensionally 
invariant weights with a previously trained model’s weights 
will reduce training time without a cost to accuracy. 
● Confirmed: Both models train in a fewer number of epochs 

to reach the same training loss. 
● Contradicted: Both models do not train in a fewer number 

of epochs and/or reach a lower performance at the end of 
training. 

● Not Clear: One model confirms the hypothesis while the 
other contradicts it.  



Independent Variables Model Initialization Weights (random vs. TL weights) 

Control Variables Model Training Loss, dropout rate, hidden dropout rate, batch 
size, epoch size, learning rate, Hardware used 

Dependent Variables 
(Measured Results) 

 Training Time, MR, MRR, Hits @ 10, Hits @ 3, Hits @ 1 

Code Modifications ● Parameter & function for loading model data from pre-
trained model to access transfer weights 

● Function to initialize weights of model being trained on a 
new dataset with the weights from the TL dataset 

● Modified stopping procedure based on 
𝐿𝑜𝑠𝑠*+,-.+/-!0	/"+0#12" 	≤ 𝐿𝑜𝑠𝑠*+,-.+/-!0	"+0.!3 

 
To expand on the details included in Table 1, the independent variables are the initialization weights of the 
network. The experimentation will be deemed successful if the model initialized with the learned weights 
from TL takes less time to reach similar loss and performance metrics as the model initialized with random 
weights. However, this hypothesis addresses a set of related questions. For one, are the two graph 
representations of different datasets WN18RR, containing work relations, and FB15k-237, containing 
knowledge base relations, related in their graphical representations? Further, if the graph representations of 
the relationships are similar, does the ConvE neural network similarly represent these graphs (i.e., do similar 
graphs result in similar neural network weights)? This is related to the weight updates and whether using 
non-random weights (weights learned from another dataset) is different than using entirely random weights. 
In other words, if the neural networks learn similar representations of similar graphs, it is expected that 
when TL is used there would not be as many weight updates required to reach a high-performing model. If 
this is true, it would be assumed the graphs are related in some way despite representing different data as 
the neural network learns related weight representations.  
 
Concerning the dependent variables, the early stopping procedure is dependent on the training loss of the 
model. This is not a dependent variable itself, however, it will enable early stopping procedures so that 
changes in training times can be analyzed without bias. The reason for this selection is based on what loss 
is considered to represent. Generally, it can be considered as a numeric representation of what a model has 
yet to learn. Therefore, loss is considered as a proxy for equivalent learning in this experimentation and a 
measure by which training is terminated. Following early termination (should it occur), the model 
performance will further be assessed using dependent variables such as MR, MRR, Hits @k, and total 
training time (i.e., the total number of training epochs). If the training time decreases while the other metrics 
are much lower, performing this would not confirm the proposed hypothesis and be unexpected. However, 
if training time decreases and the other performance metrics are approximately equivalent, this would 
confirm the benefits of TL. If our model takes the same amount of time to train and obtains similar accuracy 
values, this suggests TL has no effects.  
 
All hyperparameters will be held constant; these include but are not limited to the dropout rate, the hidden 
dropout rate, batch size, epoch size, and the learning rate.  All results and experimentation will be 



determined by training and testing the models on a Xeon E5-2650 2.2 GHz CPU and x10 Tesla P4 GPU 
with GPU acceleration enabled. 
IV. Experimental Results and Discussion 
To reproduce the results of the paper, ConvE was trained on a selection of the datasets that were used by 
Dettmers et al. [4], namely FB15k-237 and WN18RR. FB15k and WN18 were not analyzed as the 
README.md file provided with the source code noted that these models suffered from test leakage. 

To execute this testing, the default hyperparameters, obtained through grid search by Dettmers et al. [4] 
were used. These parameters include embedding dropout = 0.2, feature map dropout = 0.2, projection layer 
dropout = 0.3, embedding size = 200, batch size = 128, learning rate = 0.003, and label smoothing = 0.1. 
Further, all models were trained for a total of 1000 epochs. It should be noted there was a discrepancy 
between the default learning rate included in the code and the one proposed in the paper. Given the belief 
the code is what was used for analysis, the default it included (0.003) was used, as opposed to the rate given 
in the paper (0.001). 

Included is a verification of the results for WN18RR and FB15k-237 which show a high level of alignment 
between the reproduced results and the results published by Dettmers et al. (see Table 2). The results were 
compared for MR, MRR, and various hits@k metrics as included in [4]. For a more complete description 
of such metrics, see Section I. It was found that for both datasets the MRR was slightly lower than the one 
noted by Dettmers et al. A lower MRR suggests lower model performance. Across hits@k metrics, the 
reproduced results show slightly higher performance than Dettmers et al. on the WN18RR dataset. On the 
other hand, for the FB15k-237 dataset, the hits@k metrics calculated are slightly lower than Dettmers et al. 
Similarly, the MR for WN18RR suggests better performance than that noted by Dettmers et al. while 
FB15k-237 data suggests poorer performance. 
 

Table 2 Model Metric Performance Testing 
  WN18RR  FB15k-237 

 MR MRR @ 10 @ 3 @ 1 MR MRR @ 10 @ 3 @ 1 
Dettmers et al. 5277 0.46 0.48 0.43 0.39 246 0.316 0.491 0.350 0.239 
Reproduction 5138 0.43 0.51 0.45 0.39 270 0.305 0.479 0.333 0.219 

Transfer Learning 5186 0.42 0.50 0.43 0.38 279 0.301 0.470 0.330 0.216 
 
The discrepancies reported could be attributed to random number generation, given Dettmers et al. code 
does not set the random number generation to a single value, or true discrepancies between the model's 
reported performance and its true performance. Given the random distribution of indications showing 
Dettmers et al.’s model is both better and worse than reported, it is believed that the discrepancies between 
the models are due to randomness and not some systematic biasing of the results. Given this, it is believed 
that the performance reported by Dettmers et al. can be trusted. 
 
With the results of Dettmers et al. verified, accurate conclusions can be drawn regarding the effect of TL. 
In Table 2, the results are notable (see the row “Transfer Learning”). First, consider WN18RR performance 
(see column WN18RR and the row entitled “TL”) after being trained with the final model of FB15k-237 
used to initialize the weights as described in Section III. Across MRR and hits @ K metrics, the model 
performs only slightly below that of the reproduced results of Dettmers et al. and Dettmers et al.’s direct 



results. For MR, the results of TL are poorer performance than that of this work’s reproduction of Dettmers 
et al.’s results but higher performance than that of Dettmers et al.’s reported results. 
For FB15k-237 trained with the weights of WN18RR (see column FB15k-237 and the row entitled “TL”) 
the results follow a similar pattern. The hits @ k metrics and MRR of the model trained with TL are slightly 
poorer than that of this work’s reproduction of Dettmers et al. but not significantly different. Similarly, the 
MR suggests slightly poorer performance than this work’s reproduction of Dettmers et al.’s result and the 
direct results of Dettmers et al. In conclusion, the models do not perform significantly differently when 
initiated with transfer learned weights which is a positive indication. 
 
To properly analyze the effect of TL on ConvE and the impact of the proposed modifications, models’ 
performance metrics must be analyzed in conjunction with training times. The effect is substantial when 
considering the two proposed models (see Table 3). For WN18RR, the model’s training time is reduced by 
approximately nine and a half hours, taking only 22.5% of the time it took to train with random weights. It 
trained for 243 epochs before reaching the early stopping procedure rather than training for one thousand 
epochs. 
 

Table 3: Viability Testing of Time and Dataset Attributes 

     Training Runtime 
(HH:MM:SS) 

Transfer Learning Training 
Runtime (HH:MM:SS) 

Training 
Epochs 

Transfer Learning 
Training Epochs  

WN18RR 12:11:35 02:44:45 1000 243 

FB15k-237 15:46:31 00:39:33 1000 37 

 
Similar effects are prompted for the FB15k-237 model. The full model training time for TL is 4.18% of the 
total elapsed time when initiated with random weights. This is a reduction of over fifteen hours in training 
time. Rather than training for one thousand epochs, it trains for thirty-seven epochs before reaching the 
early stopping procedure. 
 
The significance of these results is best understood in the context of the simultaneous reduction in training 
time while model performance is maintained. This suggests that the hypothesis of this work, that similar 
model performance could be reached with a reduction in training time is correct. The results are notable as 
the graphs on which the original models were trained represent different relationships. As previously noted, 
WN18RR represents word relationships while FB15k-237 represents knowledge relationships. Regardless 
of the different meanings of these graphs, the model weights are relatively transferable with both models 
having a notable reduction in training time while maintaining accuracy when they are initiated with TL 
data. 
 
A notable result is that the training time of FB15k-237 was reduced more dramatically than the training 
time of WN18RR was by the implementation of TL. This suggests that the weights learned by WN18RR 
are more transferable to FB15k-237 than the weights learned by FB15k-237 are transferable to WN18RR. 
It is unclear what may be causing this unexpected relationship. One potential explanation is the differences 
in the size of the datasets. For example, it may be the WN18RR was able to learn a better relationship after 
being trained for 1000 epochs then FB15k-237 due to its reduced dimensionality (i.e., fewer relationship 



types, fewer triples, etc.) (see Table 4). Therefore, when WN18RR was transferred to use as the initial 
weights for FB15k-237 the model’s training time was reduced more significantly as the weights it was 
initialized with were more optimal on the original training graph. This explanation is partially complete as 
its weights transfer to a model with more relationships (FB15k-237) better than one with more relationships 
(FB15k-237) does to one with fewer relationships (WN18RR). This is surprising as it would be expected a 
model which has to learn more relationships would be more robust. Regardless, this points to future work 
analyzing in more depth what factors cause TL to be more useful. 
 

Table 4: Dataset Attributes 

     Triples Entities Relationships 

WN18RR 93,003 40,943 11 

FB15k-237 310,116 14,541 237 

 
Another interesting relationship is that FB15k-237 has far more triples relative to its entity count than 
WN18RR. This seems to indicate that FB15k-237 is more strongly connected in general than WN18RR. 
Despite these differences in strong vs. weakly connected graphs, transfer learning is still able to improve 
training times while maintaining accuracy. 
 
One limitation of this work is the early stopping procedure. In this work, the early stopping procedure for 
TL was based on the training loss for a dataset observed after 1000 epochs of it being trained with randomly 
initialized weights. If transfer learning was used in application, this early stopping procedure would not be 
applicable as the training loss would be unknown (as there would not be any prior training). Future 
improvements could develo an early stopping procedure based on model fit. Potential measures for model 
fit could include stopping training once the training loss stops improving by some percentage change or if 
the training loss is within some threshold of the test loss. 
 
This work addressed the utility of TL on dissimilar link prediction graphs using the ConvE link prediction 
model proposed by Dettmers et al. Notably, the training time was dramatically reduced for models to reach 
a similar loss value as when initialized with random weights and trained for 1000 epochs. Further, while 
training time was reduced the resulting models produced results indistinguishable to if the model was 
trained for 1000 epochs with randomly initialized weights. While limitations exist in this work, the results 
presented seem to suggest that for the ConvE model transfer learning has the potential to dramatically 
reduce training times while maintaining the performance of learned models. 
 
Note: Please find the code repository located at https://github.com/calvinnau4/conve-recreate-and-
improve.git

https://github.com/calvinnau4/conve-recreate-and-improve.git
https://github.com/calvinnau4/conve-recreate-and-improve.git
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